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Abstract

Electroweak radiative corrections give rise to large negative, double-logarithmically

enhanced corrections in the TeV region. These are partly compensated by real

radiation and, moreover, affected by selecting isospin-noninvariant external states.

We investigate the impact of real gauge boson radiation more quantitatively by

considering different restricted final state configurations. We consider successively

a massive abelian gauge theory, a spontaneously broken SU(2) theory and the

electroweak Standard Model. We find that details of the choice of the phase space

cuts, in particular whether a fraction of collinear and soft radiation is included,

have a strong impact on the relative amount of real and virtual corrections.



1 Introduction

During the past years electroweak radiative corrections have been evaluated for numerous

lepton and hadron collider processes. Despite the relatively small coupling, αW /π =

α/(π sin2 θw) ≃ 0.01, virtual gauge boson exchange becomes important at high energies,

a consequence of the enhancement by large ”Sudakov” logarithms [1,2] with the dominant

terms proportional to ln2 s/M2
W,Z .

In contrast to QED and QCD, where physical cross sections are obtained by combining

virtual and real radiation, events with and without real W - and Z-bosons have a distinctly

different signature and as such they can in principle be separated in an experimental

setup. This observation has led to numerous studies for exclusive reactions [3–26], ranging

from purely electroweak four-fermion processes or W -pair production at electron-positron

colliders to the hadronic production of Z, γ [27, 28] or W [29, 30] at large transverse

momenta. In some of these cases, in particular for scattering energies in the TeV region,

the (negative) one-loop corrections amount to 10% or even up to 30%. This has motivated

the investigation of logarithmically enhanced terms of higher orders, either from two-loop

effects or in a resummed all-order formulation. To obtain the leading logarithmic (LL)

and next-to-leading logarithmic (NLL) terms is straightforward, however, at the same

time insufficient for an adequate description e.g. of the dominant two-loop terms. This

has motivated studies of higher order contributions and NNLL, partly even NNNLL,

results are available for many reactions [9, 10, 22, 23, 25].

The crucial assumption in most of these studies, that events with real gauge boson

radiation can be discriminated from the ”exclusive” final state, has to be justified by

a detailed analysis which obviously depends on the experimental setup. In particular

significant differences are expected between electron-positron and hadron colliders, and

between leptons or quark and gluon jets in the final state. For ”clean” reactions like

lepton- or gauge boson-pair production in electron-positron collisions one may anticipate

a clear separation, for quark jets in the final state at an hadron collider like the LHC the

situation is expected to be more involved.

This has motivated a detailled study of weak boson emission at hadron colliders [31],

which demonstrates that, although partial cancellations between virtual and real radi-

ation may occur, the real emission process often only compensates part of the virtual

corrections. At first glance one might expect that the combination of virtual and real

radiation, the latter completely inclusive, would lead to a complete compensation of

the Sudakov logarithms. However, as observed in [32], the preparation of isospin non-

invariant external states like electrons or up and down quarks at electron-positron or

hadron colliders, respectively, leads to a non-vanishing logarithmically enhanced remain-

der, a phenomenon called Bloch-Nordsieck violations. These studies were performed in

the high-energy limit and real radiation was treated in a completely inclusive manner.

In the present paper we investigate the relative size of virtual versus real radiation,

imposing a variety of cuts on the phase space of the emitted gauge boson. These cuts

are supposed to represent, in somewhat idealized form, constraints arising from typical

detector configurations. As characteristic examples we will consider final states with
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soft gauge bosons or, alternatively, with gauge bosons collinear to incoming or outgoing

particles. Our considerations will allow to ”interpolate” between the completely exclusive

and the inclusive treatments. Furthermore, for simplicity, the discussion will be limited

to four-fermion processes.

The outline of this paper is as follows. In Section 2 we work out the generic structure

of Sudakov logarithms in real emission processes with phase space cuts. While this

discussion will be limited to an abelian gauge theory, we investigate the structure and

the numerical impact of the Bloch-Nordsieck violations in a spontaneously broken SU(2)

theory in Section 3. The size of the Bloch-Nordsieck violations will be compared to the

difference between the fully inclusive result and the one with restricted phase space. In

Section 4 our predictions for the Standard Model are presented. As a working example we

consider the process e+e− → qq̄. We compute next-to-leading order (NLO) electroweak

corrections and, in particular, investigate the compensation of the Sudakov suppression

from unobservable W - and Z-boson radiation. We finally conclude in Section 5.

2 Real emission with phase space restrictions

We first pursue the question to which extent the virtual Sudakov corrections are com-

pensated by the real emission process if the latter is subject to certain phase space re-

strictions. In contrast to the familiar picture from QED or QCD, where an infrared-safe

observable necessarily requires inclusion of soft and collinear gauge boson emission, it will

be instructive for our purposes to also consider scenarios that allow for soft or collinear

radiation. The physical relevance of the particular phase space cuts will depend on the

details of the observable under consideration. We therefore relegate this question to our

phenomenological analysis in Section 4 and concentrate for the moment on the generic

structure of Sudakov logarithms in real emission processes with phase space restrictions.

It will be convenient for the current discussion to work in a first step within a toy

theory that captures the physics of interest while allowing for a compact and transparent

presentation. To be specific we consider an abelian gauge theory with explicit mass term
1
2
M2AµAµ that spoils the gauge invariance, but leads, nevertheless, to a consistent renor-

malizable theory. In the remainder of this section we first address Sudakov logarithms

that arise from final state radiation, subsequently we generalize the discussion to the

four-fermion process.

2.1 Final state radiation

Let us start with an elementary process, namely with the decay of a heavy vector boson

(with mass
√

s) into a pair of massless fermions. We assume that this initial vector

boson does not couple to our toy theory and that the decay is mediated at Born level by

some other vectorlike interaction which we do not specify further. The one-loop virtual

corrections are then entirely encoded in the abelian vector form factor (in the timelike

region), which has been the central object in the study of electroweak Sudakov logarithms.
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In the Sudakov limit s ≫ M2, the explicit one-loop calculation yields

Γ(V ) ≃ α

4π

{

−2
[

ln2 s

M2
− 3 ln

s

M2

]

+
2π2

3
− 7

}

ΓB, (1)

where the fermion wave functions have been renormalized in the on-shell scheme and

ΓB is the Born decay rate. The result reveals a characteristic structure that dominates

the decay rate in the high-energy limit. It contains a Sudakov factor α/(4π) [ln2 s/M2 −
3 ln s/M2] with negative weight (and proportional to the charge squared) for each of the

interacting fermions. We will see in the following section that the Sudakov factor is

process-independent and contains the full information about collinear logarithms.

We next consider the corresponding real emission process, where the light vector boson

is emitted from the final state fermions. Without any restriction on the phase space of

the emitted boson, the decay rate becomes in the Sudakov limit

Γ(R) ≃ α

4π

{

2
[

ln2 s

M2
− 3 ln

s

M2

]

− 2π2

3
+ 10

}

ΓB. (2)

We see that the logarithmic terms cancel in the sum of virtual and real corrections, in

accordance with the expectations from the Kinoshita-Lee-Nauenberg (KLN) theorem [33,

34].

Let us now examine how the pattern of these logarithms changes, when we impose

different restrictions on the phase space of the emitted boson. We first consider a scenario

that allows for soft and collinear radiation. To this end we require that the final state

fermions are almost back-to-back in the center of mass frame, i.e. we impose a cutoff on

the opening angle of the fermion pair, θff̄ ≥ θc
ff̄

, with θc
ff̄

close to 180◦. In other words

we only exclude hard and non-collinear radiation. We now obtain for the restricted real

emission process (with cc
ff̄

≡ cos θc
ff̄

)

Γ(R)(θc
ff̄

) ≃ α

4π

{

2
[

ln2 s

M2
− 3 ln

s

M2

]

+ 4Li2

(

−
1 − cc

ff̄

1 + cc
ff̄

)

+
8(2 − cc

ff̄
)

(1 − cc
ff̄

)2
ln

(

2

1 + cc
ff̄

)

+
1 − 5cc

ff̄

1 − cc
ff̄

− 2π2

3

}

ΓB, (3)

which holds for s ≫ M2 and 1 + cc
ff̄

≫ M2/s. We see that the given phase space cut

does not modify the structure of the mass singularities at all. As the restricted phase

space covers all of the singular regions, we again obtain the full Sudakov factors and

hence observe a complete cancellation between virtual and real Sudakov logarithms.

It is also interesting to consider a highly restricted phase space in the given scenario,

which corresponds to the limit θc
ff̄

→ 180◦. We then find

Γ(R)(θc
ff̄ → 180◦) ≃ α

4π

{

2
[

ln2 s

M2
− 3 ln

s

M2

]

−2

[

ln2

(

2

1 + cc
ff̄

)

− 3 ln

(

2

1 + cc
ff̄

)]

− 4π2

3
+ 3

}

ΓB, (4)
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which illustrates how mass singularities are translated into phase space logarithms if

only a small fraction of soft and collinear radiation is taken into account. The question

of whether or not the Sudakov logarithms numerically dominate the decay rate finally

depends on the size of the argument in the phase space logarithms. From our explicit

result we are led to expect that the virtual Sudakov logarithms are largely compensated

if only a loose cutoff on the opening angle of the fermion pair is applied with θc
ff̄

. 160◦.

We next consider a different scenario that allows for collinear radiation only. We now

require that the emitted boson is almost parallel to one of the final state fermions, i.e. we

impose the constraints θfb ≤ θc
F b or θf̄ b ≤ θc

F b on the angles between the emitted vector

boson and the outgoing fermions. Let us now focus for simplicity on the singular part,

which is found to be (with cc
F b ≡ cos θc

F b)

Γ(R)(θc
F b) ≃

α

4π

{

2
[

ln2 s

M2
− 3 ln

s

M2

]

− 4 ln

(

1 + cc
F b

1 − cc
F b

)

ln
s

M2
+ . . .

}

ΓB, (5)

which holds for s ≫ M2 and 1 ≥ 1 − cc
F b ≫ M2/s (we are actually only interested in

the region 1 ≫ 1 − cc
F b ≫ M2/s). Whereas the double logarithms again cancel between

virtual and real corrections, the linear logarithms do not (for θc
F b < 90◦). The incomplete

cancellation reflects the fact that the considered scenario does not cover all of the singular

regions, it misses in particular soft radiation that escapes the two cones around the final

state fermions. We thus expect that the compensation of the virtual Sudakov logarithms

is again significant but less effective in this scenario.

For completeness let us also consider a scenario that allows for soft radiation only.

We now impose a cutoff on the momentum of the vector boson |~k| ≤ kc or, equivalently,

on the invariant mass of the fermion pair Q2 ≥ Q2
c . As long as we do not cut into the

endpoint region, i.e. for kc ≫ M or s − Q2
c ≫ 2M

√
s, we obtain (with zc ≡ Q2

c/s)

Γ(R)(zc) ≃
α

4π

{

2
[

ln2 s

M2
− 3 ln

s

M2

]

+ 2
[

4 ln(1 − zc) + 2zc + z2
c

]

ln
s

M2
+ . . .

}

ΓB. (6)

We thus find a situation that is conceptually similar to the one before. We again observe

an incomplete cancellation of the linear logarithms (for zc > 0) since part of the singular

region from (hard-)collinear emission is missed.

2.2 Four-fermion process

The preceding example allowed us to study the generic structure of Sudakov logarithms

in real emission processes with some exemplary (and idealized) phase space restrictions.

Before making any quantitative statements, let us now switch to the four-fermion process

which brings in two new aspects. First, we have to deal with initial state radiation and,

second, we have to consider the interplay of several phase space restrictions.

The one-loop virtual corrections to the s-channel four-fermion process f ′f̄ ′ → f f̄

amount to the calculation of two form factor type corrections, two box diagrams and the

vacuum polarization. As the interference between tree and box diagrams vanishes in our
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abelian toy theory, the result takes a particularly simple form

σ(V ) ≃ α

4π

{

−4

[

ln2 s

M2
− 3 ln

s

M2

]

+
4π2

3
− 14 − 40

9
nf − 16

9
ns

}

σB , (7)

where σB ≃ 4πα2/3s is the Born cross section. We thus obtain twice the form factor

correction (1) and a contribution from the vacuum polarization1.

In the corresponding real emission process the vector boson can be emitted from initial

and final state fermions. In contrast to the previous example, we now impose a cutoff on

the invariant mass of the fermion pair from the beginning, Q2 ≥ Q2
c ≫ M2, which allows

us to circumvent the s-channel resonant contribution from the initial state radiation

(which is of no particular interest for us since we focus on final state configurations that

resemble the four-fermion process). Without further restrictions on the emission process,

the cross section now becomes in the logarithmic approximation (with zc ≡ Q2
c/s)

σ(R)(zc) ≃
α

4π

{

4

[

ln2 s

M2
− 3 ln

s

M2

]

+2

[

1 + 4zc + z2
c − 2 ln

zc

(1 − zc)4

]

ln
s

M2
+ . . .

}

σB, (8)

where we assumed that M2 ≪ Q2
c ≪ s − 2M

√
s. Due to the explicit cutoff Q2

c , we thus

start with a mismatch between linear virtual and real logarithms from the beginning.

Even if we considered a fully inclusive observable, we actually would not expect the

logarithms from initial state radiation to completely cancel the corresponding virtual

ones. This may be illustrated with the differential cross section in z ≡ Q2/s,

dσ(R)

dz
≃ α

4π

{

1

z

(

4
1 + z2

1 − z
ln

(1 − z)2s

zM2
− 8(1 − z)

)

+

(

4
1 + z2

1 − z
ln

(1 − z)2s

M2
− 8(1 − z)

)}

σB, (9)

where the first (second) line contains the initial (final) state radiation2. Integrating the

second line in the kinematic limits 0 ≤ z ≤ (1 − M/
√

s)2, we recover the Sudakov

logarithms from the inclusive final state radiation in (2). For the initial state radiation,

however, we have to proceed differently to single out the logarithms that match the

according virtual ones. Applying the usual prescription for plus-distributions, we get

σ
(R)
initial ≃

α

4π

{

2

[

ln2 s

M2
− 3 ln

s

M2

]

+ 4

∫ 1

0

dz

z

[

1 + z2

1 − z
ln

(1 − z)2s

M2

]

+

+ . . .

}

σB, (10)

1We assume that the theory contains nf massless fermions and ns (light) scalar bosons and renormalize

the coupling constant in the MS-scheme. We further set the renormalization scale µ =
√

s.
2The interference between initial and final state radiation vanishes in the abelian toy theory in analogy

to the cancellation of the box diagrams mentioned above.
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Scenario A:

f̄

f

f̄ ′ f ′

θc
Ib

θc
ff̄

Scenario B:
f

f̄ ′ f ′

θc
Ib

θc
F b

f̄

Figure 1: Different restrictions on the real emission process. The momentum of the

undetected gauge boson (wavy line) is assumed to lie within the shaded area. In Sce-

nario A (collinear and soft) we require the final state fermions to be almost back-to-back

or the emitted boson to lie within a cone around the initial state fermions. In Scenario B

(collinear) the emitted boson has to be within any of the cones around the fermions.

which illustrates that there is a single collinear logarithm left that does not cancel between

virtual and real corrections. The reason for this incomplete cancellation is of course well-

known; according to the KLN theorem we would have to account for incoming vector

bosons to recover complete cancellation. In QCD applications the remnant collinear

singularity is usually factorized into process-independent parton distribution functions

and similar methods are used in the context of QED. For the weak interactions with a

physical gauge boson mass, however, there is no need to factorize this contribution and

one is left with a certain mismatch in a fixed-order calculation.

The second new element of the four-fermion process consists in the fact that we want

to impose several phase space restrictions at once. In particular we find it convenient to

distinguish the following two scenarios, which we will reconsider in our phenomenological

analysis in Section 4 (for an illustration of the scenarios cf. Figure 1):

• In Scenario A we combine virtual corrections with real gauge boson radiation, if

the final state fermions are almost back-to-back, with an opening angle θff̄ ≥ θc
ff̄

,

or if the emitted gauge boson is almost collinear to one of the initial state fermions,

i.e. if θf ′b ≤ θc
Ib or θf̄ ′b ≤ θc

Ib. Applying these phase space restrictions in addition to

the Q2-cut discussed above, we find the logarithmic terms to be

σ(R)(zc, θ
c
Ib, θ

c
ff̄

) ≃ α

4π

{

4

[

ln2 s

M2
− 3 ln

s

M2

]

+2

[

1 + 4zc + z2
c − 2 ln

zc

(1 − zc)4

]

ln
s

M2
+ . . .

}

σB. (11)
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In comparison with (8) we see that the additional phase space cuts θc
Ib and θc

ff̄
do

not further modify the pattern of the Sudakov logarithms since all of the singular

regions (collinear to initial and final state and soft) are covered in this scenario.

We therefore expect a strong cancellation of the virtual corrections even for tight

cuts on θc
Ib and θc

ff̄
.

• In Scenario B we require that the undetected vector boson is almost collinear to

one of the initial state fermions, i.e. θf ′b ≤ θc
Ib or θf̄ ′b ≤ θc

Ib, or to one of the final

state fermions, θfb ≤ θc
F b or θf̄ b ≤ θc

F b. As we do not account for soft radiation that

escapes the four cones around the fermions, we now expect a somewhat modified

logarithmic structure and, consequently, the compensation of the virtual corrections

to be less effective. Specifically, we now obtain

σ(R)(zc, θ
c
Ib, θ

c
F b) ≃

α

4π

{

4

[

ln2 s

M2
− 3 ln

s

M2

]

+2

[

1 + 4zc + z2
c − 2 ln

zc

(1 − zc)4
− g(θc

Ib, θ
c
F b)

]

ln
s

M2
+ . . .

}

σB,

(12)

with (cc
Ib ≡ cos θc

Ib,c
c
F b ≡ cos θc

F b)

g(θc
Ib, θ

c
F b) =

cc
Ib(3 + (cc

Ib)
2)

2
ln

(

1 + cc
F b

1 − cc
F b

)

+
cc
F b(3 + (cc

F b)
2)

2
ln

(

1 + cc
Ib

1 − cc
Ib

)

+
3cc

Ibc
c
F b

2

(

2 − (cc
Ib)

2 − (cc
F b)

2
)

. (13)

In Figure 2 we illustrate these observations quantitatively. First of all we note that

the virtual corrections induce a substantial Sudakov suppression in the TeV regime (in

the abelian toy theory with Standard Model inspired values M = 80 GeV and α = 0.03).

Depending on the phase space cuts this suppression is more or less compensated by the

real emission process. In the upper plot we illustrate the dependence on the cut on the

invariant mass of the fermion pair, zc = Q2
c/s, which is found to have a large impact on

the compensation (no angular cut has been applied so far). In the remaining plots we fix

zc = 0.5, i.e. the middle dashed line from the first plot is the upper solid reference line

for the other two plots. We, moreover, impose a rather tight cut on initial state radiation

by setting θc
Ib = 10◦ (the corresponding effect is indicated by the dotted curves). From

the middle plot it is evident that the (unobserved) real radiation has a large impact

in Scenario A, even when tight phase space cuts as θc
ff̄

= 175◦ are applied. For more

moderate cuts as θc
ff̄

= 165◦ the virtual corrections are almost completely compensated

in this setup. In Scenario B the compensation is found to be less effective. For moderate

cuts as θc
F b = 30◦ the virtual corrections are reduced, for instance, from −36% to −29%

at 3 TeV. This comparison illustrates also quantitatively the importance of covering all

of the singular phase space regions.
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-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.75

0.5

zc = 0.25

∆σ(zc)/σB

√
s [TeV]

1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

175 °

170 °

165 °

Θ
f f

c
= 0°

zc = 0.5

ΘIb
c
= 10°

Scenario A: ∆σ(zc, θ
c
Ib, θ

c
ff̄

)/σB

√
s [TeV]

1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

15°

30°

45°

ΘFb
c
= 180°

zc = 0.5

ΘIb
c
= 10°

Scenario B: ∆σ(zc, θ
c
Ib, θ

c
Fb)/σB

√
s [TeV]

Figure 2: Relative NLO corrections to the four-fermion process in the abelian toy theory as a

function of the center of mass energy
√

s in TeV. In each plot the lower solid line represents the

virtual correction (with M = 80 GeV, α = 0.03, nf = 6, ns = 1) and the dashed lines refer to

the sum ∆σ = σ(V )+σ(R) with different restrictions on the real emission process. The individual

dashed lines (green/red/blue, from bottom to top in each plot) refer to zc = 0.75/0.5/0.25 and

no angular cut (top), θc
ff̄

= 175◦/170◦/165◦ (middle) and θc
F b = 15◦/30◦/45◦ (bottom). In the

lower two plots we fixed zc = 0.5 and θc
Ib = 10◦. The dotted curves indicate the contribution

from initial state radiation (corresponding to θc
ff̄

= 180◦ and θc
F b = 0◦, respectively).
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3 Bloch-Nordsieck violations

The pattern of Sudakov logarithms is more complicated in non-abelian gauge theories.

The non-abelian group structure leads, in particular, even for inclusive observables (with

respect to phase space) to a mismatch between virtual and real Sudakov logarithms as

long as one does not sum over the non-abelian charges of the external particles. This

mismatch, commonly referred to as Bloch-Nordsieck (BN) violations, turns out to be

irrelevant in practical QCD applications, since the confinement of the coloured partons

into colour-neutral hadrons enforces the summation (or average) over the colour charges.

The spontaneous breakdown of the electroweak interactions, however, allows to prepare

external states with definite weak isospin. Consequently, even inclusive observables are

affected by electroweak Sudakov logarithms [32].

In this section we reconsider the four-fermion process in a spontaneously broken SU(2)

theory to study the structure and the numerical impact of the BN violations. Whereas

the gauge bosons W±,3 acquire a common mass M in this non-abelian toy theory, the

fermions are again supposed to stay massless and to have a vectorlike coupling to the

gauge bosons. In the following we first address the structure of the BN violations on the

level of the total cross section, then we switch to a quantitative analysis that accounts

for the various phase space restrictions that we introduced in the previous section.

3.1 Structure of Sudakov logarithms

The dynamical origin of Sudakov logarithms is well understood; they are tied to the infra-

red structure of the theory and arise from collinear or soft radiation of (almost) massless

particles. Whereas previous analyses have mainly focused on electroweak Sudakov log-

arithms from virtual particle exchange (cf. e.g. [4, 9, 10, 24, 25, 30]), electroweak Sudakov

logarithms from real emission processes have received less attention so far [32,35]. Let us

therefore recall the origin and the structure of the BN violations in the considered SU(2)

theory in some detail. This will help us later to translate the results to Standard Model

processes.

Let us start the discussion with the collinear approximation, which is known to yield

an universal radiation factor for each external particle. This can be seen most easily in an

axial gauge, where the collinear logarithms stem from self energy insertions into external

lines. For the four-fermion process with generic isospin charges, f1f̄2 → f3f̄4, the virtual

collinear logarithms associated with the outgoing fermion f3 amount, for instance, to

σ(V,col f3) ≃ − α

4π

[

ln2 s

M2
− 3 ln

s

M2

]

(TATA)f3f ′ Cf1f̄2→f ′f̄4

B Cf1f̄2→f3f̄4

B σ0
B, (14)

where TA denotes a generator of the SU(2) group and we made the (real-valued) group

structure of the Born amplitude, Af1f̄2→f3f̄4

B = Cf1f̄2→f3f̄4

B A0
B, explicit (σ0

B ≃ 4πα2/3s is the

Born cross section of the abelian theory and a summation over A and f ′ is understood). In

the collinear approximation we thus obtain a Sudakov factor with negative weight for each

external fermion, which is to be multiplied with a Casimir factor (TATA)f3f ′ = CF δf3f ′ .
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It is convenient to disentangle the contributions from W 3 and W± exchange and to write

the result as

σ(V,col f3) ≃ − α

4π

[

ln2 s

M2
− 3 ln

s

M2

]

(

(t3f3
)2 + (t±)2

)

σf1f̄2→f3f̄4

B , (15)

where t3f3
denotes the isospin of the fermion f3 and t± = 1/

√
2 reflects the universal

coupling to the ”charged current”.

In the same approximation Sudakov logarithms from real emission processes can be

derived on the basis of universal splitting functions. We thus start in this case from the

cross section differential in z = 1 + M2/s − 2EW/
√

s, where EW is the energy of the

emitted gauge boson in the center of mass frame. The collinear logarithms associated

with the outgoing fermion f3 now become

dσ(R,col f3)

dz
≃ α

2π

[

1 + z2

1 − z
ln

(1 − z)2s

M2

]

TA
f3f ′ Cf1f̄2→f ′f̄4

B TA
f3f ′′ Cf1f̄2→f ′′f̄4

B σ0
B. (16)

Integrating this contribution in the kinematic limits 0 ≤ z ≤ (1−M/
√

s)2 and disentan-

gling again the contributions from W 3 and W± emission, yields

σ(R,col f3) ≃ α

4π

[

ln2 s

M2
− 3 ln

s

M2

]

(

(t3f3
)2 σf1f̄2→f3f̄4

B + (t±)2 σ
f1f̄2→f±

3
f̄4

B

)

, (17)

where f±
3 collectively denotes the isospin conjugate of the fermion f3, i.e. u− = d and

d+ = u. Together with (15) we see that the Sudakov logarithms from W 3 exchange cancel

between virtual and real corrections. This is, however, different for W± exchange since

the individual contributions factorize to different Born cross sections.

Let us briefly comment on the situation when the considered fermion is in the initial

state. The differential cross section contains in this case an additional factor 1/z, since

the center of mass energy of the hard subprocess has been lowered by the emission

process. One may further proceed along the lines of our explicit calculation in (10),

which again yields a Sudakov factor as in (17) and a remnant collinear logarithm in the

plus-distribution which is left uncancelled.

Soft gauge boson radiation induces further single logarithms. In contrast to the

collinear logarithms considered so far, the soft logarithms are angular dependent and

stem from interference effects. We thus have to consider gauge boson exchange between

pairs of particles. The soft logarithms can be derived in the eikonal approximation, which

for an exchange between the incoming fermion f1 and the outgoing fermion f3 yields

dσ(V,soft f1f3)

dt13
≃ − α

2π
ln2 |t13|

M2

dσ0
B

dt13
TA

f ′f1
TA

f3f ′′ Cf ′f̄2→f ′′f̄4

B Cf1f̄2→f3f̄4

B , (18)

where t13 = (pf3
− pf1

)2. We next reshuffle the logarithm according to

ln2 |t13|
M2

= ln2 s

M2
+ 2 ln

|t13|
s

ln
s

M2
+ ln2 |t13|

s
, (19)
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and discard the double Sudakov logarithm since it originates from the soft-collinear mo-

mentum region that we already accounted for in the collinear approximation. The single

angular-dependent logarithm in the second term then leads to

σ(V,soft f1f3) ≃ −α

π
N13 ln

s

M2

(

t3f1
t3f3

σf1f̄2→f3f̄4

B + (t±)2 Cf±
1

f̄2→f±
3

f̄4

B Cf1f̄2→f3f̄4

B σ0
B

)

, (20)

where the prefactor N13 encodes the angular integration,

N13 =

∫

dt13 ln
|t13|
s

dσ0
B/dt13
σ0

B

, (21)

which, despite our assumption s, |t|, |u| ≫ M2, can be performed over all angles in

the logarithmic approximation. Let us add that the single soft logarithms are absent

if we pair two particles that are both in the initial or final state, since ln2 |s12|/M2 =

ln2 |s34|/M2 = ln2 s/M2 for the four-fermion process. The eikonal approximation leads,

moreover, to additional minus signs if we exchange incoming with outgoing particles and

fermions with antifermions.

The corresponding logarithms from real emission processes can be derived similarly

within the eikonal approximation. For the same exchange between the incoming fermion

f1 and the outgoing fermion f3 we obtain

d2σ(R,soft f1f3)

dt13
≃ α

2π
ln2 |t13|

M2

dσ0
B

dt13
TA

f ′f1
Cf ′f̄2→f3f̄4

B TA
f3f ′′ Cf1f̄2→f ′′f̄4

B . (22)

Proceeding as before with (19) and extracting the contribution that encompasses the

single soft logarithm, we get

σ(R,soft f1f3) ≃ α

π
N13 ln

s

M2

(

t3f1
t3f3

σf1f̄2→f3f̄4

B + (t±)2 Cf±
1

f̄2→f3f̄4

B Cf1f̄2→f∓
3

f̄4

B σ0
B

)

. (23)

Together with (20) we again see that the W 3 contribution cancels between virtual and

real corrections, while the W± contribution does not due to the modified group structure.

In phenomenological applications one is often interested in observables that are partly

inclusive in the non-abelian charges (e.g. in processes with light quarks in the final state).

Let us therefore briefly address the cross sections σuū and σud̄, where the isospin charges of

the initial state particles have been fixed while the final state is considered to be inclusive

(for the neutral current we thus sum, for instance, over u′ū′W 3, u′d̄′W−, etc. where u′/d′

refer to a different isospin doublet than u/d). As the BN violations from the final state

particles are washed out for these observables, the sum of virtual and real corrections is

free from angular-dependent logarithms. We thus obtain a particularly simple result [32],

∆σuū = σ
(V )
uū + σ

(R)
uū ≃ α

4π

[

ln2 s

M2
− 3 ln

s

M2

]

(t±)2
(

σB
ud̄

+ σB
dū − 2σB

uū

)

,

∆σud̄ = σ
(V )

ud̄
+ σ

(R)

ud̄
≃ α

4π

[

ln2 s

M2
− 3 ln

s

M2

]

(t±)2
(

σB
uū + σB

dd̄
− 2σB

ud̄

)

, (24)
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where we suppressed the logarithms from initial state radiation that are not supposed to

cancel (plus-distributions). Given the Born relations σB
ud̄

= σB
dū = 2σB

uū = 2σB
dd̄

, we get

∆σuū = −∆σud̄ ≃ α

4π

[

ln2 s

M2
− 3 ln

s

M2

]

(t±)2 σB
ud̄. (25)

On the basis of the BN violations, we thus expect an overcompensation of the virtual

corrections for the inclusive neutral current process, while the real radiation is expected

to be less important for the charged current.

3.2 NLO calculation with phase space cuts

Let us now investigate the numerical impact of the BN violations and their interplay with

the phase space cuts. In contrast to the considerations from the previous section, we now

consider the full NLO calculation accounting for double and single Sudakov logarithms

as well as constant terms. Power-suppressed terms of O(M2/s), on the other hand, will

be neglected.

In this approximation the one-loop virtual corrections to the s-channel four-fermion

process f1f̄2 → f3f̄4 become

σ(V ) ≃ α

4π

{

−4CF

[

ln2 s

M2
− 3 ln

s

M2

]

+
13

3
CA ln

s

M2
+

(

4π2

3
− 14

)

CF

+

(

259

18
− 2π2

)

CA − 40

9
TFnf − 8

9
ns

}

σf1f̄2→f3f̄4

B , (26)

which implies the same relative correction for charged and neutral current processes.

The Sudakov logarithms in (26) have a simple interpretation in terms of our formal

analysis from the previous section: the Sudakov factors ∼ CF stem from the collinear

approximation (15), while the soft logarithms ∼ CA result from the various pairings (20)

of external particles3.

In the next step we include a certain amount of (unobservable) real gauge boson

radiation according to our scenarios from Figure 1. In view of the phenomenological

applications from Section 4, we will concentrate on the semi-inclusive cross sections σuū

and σud̄ that we introduced at the end of the previous section. For both sets of cuts the

relative NLO corrections are shown in Figure 3. First of all we note that the Sudakov

suppression is somewhat less pronounced in the non-abelian toy theory due to the pref-

actor CF = 3/4 multiplying the Sudakov factors and the impact of the soft logarithms

which happen to contribute with opposite sign. Still, the one-loop virtual corrections

induce a 10-20% suppression in the TeV regime. Comparing left and right plots, we rec-

ognize the qualitative difference between the two scenarios that we worked out in detail

for the abelian theory4. The abelian picture is, moreover, significantly modified by the

3The soft logarithms were absent in the abelian theory, cf. (7), since the sum of all pairings led to an

exact cancellation in this case.
4Closer inspection reveals that the dependence on the cutoff zc, cf. (8) and (11), is also present in the

non-abelian theory, while the soft logarithms only slightly modify the angular dependence g(θc
Ib, θ

c
Fb) in

(12).
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Figure 3: Relative NLO corrections to the four-fermion process in a spontaneously broken

SU(2) theory with neutral (upper plots) and charged (lower plots) initial states (notation and

numerical input values from Figure 2).

BN violations. This is in particular true, when soft and collinear radiation is allowed

by the phase space cuts and the compensation is further favoured by the BN violations

(upper left plot). Here even for a tight cut like θc
ff̄

= 175◦ almost complete compensation

of the Sudakov suppression is observed, while for a more moderate cut as θc
ff̄

= 165◦ we

find an overcompensation of the virtual corrections. It is also interesting to compare the

upper right plot (neutral initial state, collinear radiation included) with the lower left

plot (charged initial state, soft and collinear radiation included), where one reads off that

the differences between the two scenarios can, at least to some extent, be washed out by

the BN violations.

In total we find that the large negative corrections from virtual gauge boson exchange

can be partially compensated if real radiation is included. The details of this compen-

sation mechanism depend on the isospin configuration of initial and final state particles

and on the particular phase space cuts that constrain the real radiation.
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4 Electroweak Sudakov corrections

Having exemplified the basic concepts behind the compensation of virtual Sudakov cor-

rections in spontaneously broken gauge theories, we may now translate our observations

to Standard Model processes. Let us emphasize that this discussion will be, necessarily,

of qualitative nature. The efficiency of the cuts on gauge boson radiation will depend

on the details of the specific process as, for instance, the fermionic initial and final state

(leptons or quark jets), the charge of the radiated gauge boson (Z or W ) and its de-

cay mode. Restricting the discussion for example to e+e− colliders, it is plausible that

µ+µ− will constitute a “clean” final state and gauge boson radiation can be rejected.

For quark-antiquark final states, on the other hand, collinear energetic gauge bosons de-

caying hadronically may well be masked by the quark jets. In contrast, it is plausible

that leptonically decaying Z bosons can be separated from the background. Soft gauge

bosons emitted under large angles will again lead to different signatures. The efficiency

for detection of gauge boson radiation in hadronic collisions will again be different.

With the kinematics at hadron colliders being less constrained as a consequence of the

convolution with parton distribution functions, the following discussion will be restricted

to the simpler case of electron-positron collisions while hadron collisions will be treated

at a later point [36]. Since one may expect that reactions with leptonic final states will

be fairly clean and not “contaminated” by gauge boson radiation, we will concentrate

on the process e+e− → qq̄ (where q = u, d). This allows us to study both of the aspects

that we discussed in the previous sections in a realistic environment: First, the process is

affected by BN violations since the isospin charges of the initial state fermions are singled

out and, second, soft and/or collinear gauge boson emission may not always be easily

resolved in an experimental setup due to the hadronic signature of the process.

4.1 Bloch-Nordsieck violations

Let us first address the BN violations of the current process without restrictions on

the gauge boson kinematics. From our analysis in Section 3.1 we deduce that Z boson

(and photon) emission is irrelevant in this context. Moreover, as we sum over the quark

flavours u and d in the final state, the respective BN violations are washed out. We are

thus left with the first of the equations in (24).

In the chiral electroweak theory we have, in addition, to specify the helicity structure

of the process. For left-handed leptons in the initial and left or right-handed quarks in

the final state, we obtain

∆σLL
e−e+ ≃ α

4πs2
w

[

ln2 s

M2
W

− 3 ln
s

M2
W

]

(

σB,LL

e−ν̄
− σB,LL

e−e+

)

,

∆σLR
e−e+ ≃ α

4πs2
w

[

ln2 s

M2
W

− 3 ln
s

M2
W

]

(

− σB,LR

e−e+

)

, (27)

respectively, where s2
w = sin2 θw ≃ 0.231 with θw being the weak mixing angle. As σB,LL

e−ν̄
≃

1.98 σB,LL

e−e+ the purely left-handed component shows an overcompensation of the virtual
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corrections, similar to the neutral current process from the SU(2) theory in Section 3. The

situation is, however, reversed for right-handed quarks since the corresponding charged

current process is forbidden at Born level, σB,LR

e−ν̄
= 0. The BN violations are, moreover,

absent for right-handed leptons in the initial state,

∆σRL
e−e+ = ∆σRR

e−e+ ≃ 0. (28)

The cancellation of the logarithmic W -corrections for left-handed quarks is a consequence

of the fact that we sum over quark flavours in the final state, while the BN violations are

of course absent for the purely abelian right-handed component.

We thus see that the chiral coupling of the W -bosons induces distinct patterns of BN

violations that depend on the helicities of the external particles. In the present case this

leads, in particular, to interesting effects for polarized lepton beams. For unpolarized

beams, on the other hand, the purely left-handed component is expected to dominate

the pattern since σB,LL

e−e+ ≃ 2.52 σB,RR

e−e+ ≃ 10.1 σB,LR

e−e+ ≃ 25.2 σB,RL

e−e+ at Born level.

4.2 Numerical analysis

Let us first inspect the virtual corrections to the current process in some detail. Neglect-

ing power-suppressed terms of O(M2
W,Z/s) and summing over the helicities of incoming

and outgoing fermions, the one-loop electroweak corrections for the annihilation into

(massless) up- and down-type quarks can be written as

σ
(V )
e−e+→uū

≃ α

4πs2
w

{

−1.28

[

ln2 s

M2
W

− 3 ln
s

M2
W

]

+ 1.43 ln
s

M2
W

−0.39

[

ln2 s

M2
Z

− 3 ln
s

M2
Z

]

− 1.12 ln
s

M2
Z

− 8.36

}

σB
e−e+→uū,

σ
(V )

e−e+→dd̄
≃ α

4πs2
w

{

−1.62

[

ln2 s

M2
W

− 3 ln
s

M2
W

]

+ 12.57 ln
s

M2
W

−0.56

[

ln2 s

M2
Z

− 3 ln
s

M2
Z

]

+ 1.48 ln
s

M2
Z

− 34.02

}

σB
e−e+→dd̄,

(29)

where we distinguished between Sudakov factors, which encode the collinear logarithms,

and single soft logarithms from W - and Z-boson exchange. Note that the soft logarithms

come in the latter case with a large positive coefficient, which significantly reduces the

Sudakov suppression in the few TeV region. The relative corrections to the inclusive

process e+e− → qq̄ amount, for instance, to −2.7% (−6.6%) at
√

s = 1 TeV (2 TeV),

respectively.

One comment is in order concerning our treatment of QED divergences. As our

prior interest are ”genuine” electroweak effects from W - and Z-boson emission, we will

disregard Sudakov effects of pure QED nature. In other words we do not include real

photon emission in our analysis, but rather subtract the QED divergences, which we
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Figure 4: Relative NLO electroweak corrections to e+e− → qq̄ as a function of the center

of mass energy in TeV. In each plot the lower solid line represents the virtual correction (with

α = 1/128 and s2
w = 0.231) and the dashed lines refer to the sum ∆σ = σ(V ) + σ(R) with

different restrictions on the real emission process (according to the scenarios from Figure 1).

The individual dashed lines (green/red/blue, from bottom to top in each plot) refer to θc
ff̄

=

175◦/170◦/165◦ (left) and θc
F b = 15◦/30◦/45◦ (right). We further set zc = 0.5/0.7 in the

upper/lower plots and θc
Ib = 10◦. The dotted curves indicate the contribution from initial state

radiation (corresponding to θc
ff̄

= 180◦ and θc
F b = 0◦, respectively).

regularized with a photon mass, from the virtual corrections (they have already been

omitted in (29)). In order to obtain a physical cross section, our results thus have to be

supplemented by a standard QED correction factor that depends on fermion masses and

on specific cuts that constrain the soft photon emission, but is independent of MW,Z . For

the process under consideration this is a gauge invariant separation.

Let us now turn to real W - and Z-boson radiation. Focusing again on the process

with unpolarized leptons in the initial state and summing over the quark species and

polarizations in the final state, we illustrate the size of the BN violations in the upper

plots from Figure 4 (adopting the same conventions as in Figure 3). As the process is

dominated by the purely left-handed component, we essentially recover the pattern of

the neutral current process from the SU(2) theory, cf. the upper plots from Figure 3.

Our default choice of phase space cuts (zc = Q2
c/s = 0.5, θc

Ib = 10◦) may, however, not be

quite realistic for the considered process. As an alternative we therefore show the result
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for a more restrictive cut on initial state radiation (zc = 0.7, θc
Ib = 10◦) in the lower plots

from Figure 4. In other words we demand that the quark-antiquark pair (or rather their

associated jets) carries at least about 84% of the beam energy and we assume that W -

and Z-bosons, that are emitted into the extreme forward direction, cannot be resolved

for angles θIb ≤ 10◦ (which corresponds to a pseudorapidity cut |η| ≥ 2.4). We may then

investigate the impact from soft and (final state) collinear W - and Z-boson radiation by

varying the parameters θc
ff̄

and θc
F b.

From the lower plots in Figure 4 we read off that real gauge boson radiation becomes

numerically relevant in the few TeV region only if some fraction of collinear and soft

W - and Z-bosons escapes experimental detection (Scenario A). For reasonable values of

phase space cuts as θc
F b = 15◦ the Sudakov suppression is, for instance, only marginally

reduced in Scenario B from −2.7% (−6.6%) to −2.6% (−6.1%) at
√

s = 1 TeV (2 TeV).

In contrast to this the impact from real radiation is much more pronounced if some soft

non-collinear radiation is accounted for. In Scenario A the Sudakov suppression is, for

instance, reduced to −1.8% (−2.9%) for θc
ff̄

= 170◦.

5 Conclusions

The purpose of our work was to investigate to which extent real gauge boson radiation

can compensate the characteristic negative virtual corrections that arise in high-energy

reactions. As the latter are driven by Sudakov logarithms, the compensation mechanism

depends obviously on the amount of soft and collinear radiation that is allowed by the

phase space cuts. A second interesting element in this context is the mismatch of loga-

rithmically enhanced terms in spontaneously broken gauge theories, a phenomenon called

Bloch-Nordsieck violations.

In order to address these issues separately, we subsequently studied a massive abelian

gauge theory, a spontaneously broken SU(2) theory and the electroweak Standard Model.

We derived analytical results for some exemplary (and idealized) cuts, which facilitate

the qualitative understanding of the compensation mechanism. In our numerical analysis

we found remarkable differences for cuts which cover all of the singular regions (collinear

and soft) and those that include them only partially (collinear or soft).

The factorization of soft and collinear singularities can be exploited to compute the

Bloch-Nordsieck violations for inclusive cross sections on a process-independent basis.

Depending on the non-abelian charges of the external particles, the Bloch-Nordsieck

violations can lead to a partial cancellation or to an overcompensation of the virtual

corrections. We argued that this can to some extent wash out the qualitative differences

of the phase space cuts.

We, in particular, tried to understand to which extent electroweak Sudakov correc-

tions are affected by these issues. To this end we discussed the case of electron-positron

annihilation into uū and dd̄ quarks in more detail. We performed an explicit NLO calcu-

lation and investigated the impact from unobservable W - and Z-boson radiation. While

the Sudakov suppression is not particularly pronounced for this specific process, it allowed
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us to study the compensation mechanism in a realistic environment. We found that real

radiation becomes numerically relevant for this process only if a fraction of collinear and

soft W - and Z-bosons escapes experimental detection.

From the phenomenological point of view real W - and Z-boson radiation is certainly

more important for hadron collider processes. Current hadron colliders are on the eve of

probing the multi-TeV region in which the Sudakov effects become more pronounced. The

hadronic environment makes, moreover, the discrimination of real gauge boson radiation

much more challenging. Typical observables at hadron colliders are actually largely

inclusive; the Drell-Yan process allows, for instance, for an arbitrary number of W - and

Z-bosons decaying hadronically. We plan to extent the presented analysis to hadron

collider processes in a future publication [36].
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