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Abstract

The top-pair tt̄ production cross section close to threshold in e+e− collisions is strongly affected

by the small lifetime of the top quark. Since the cross section is defined through final states con-

taining the top decay products, a consistent definition of the cross section depends on prescriptions

how these final states are accounted for the cross section. Experimentally, these prescriptions

are implemented for example through cuts on kinematic quantities such as the reconstructed top

quark invariant masses. As long as these cuts do not reject final states that can arise from the

decay of a top and an anti-top quark with a small off-shellness compatible with the nonrelativis-

tic power-counting, they can be implemented through imaginary phase space matching conditions

in NRQCD. The prescription-dependent cross section can then be determined from the optical

theorem using the e+e− forward scattering amplitude. We compute the phase space matching

conditions associated to cuts on the top and anti-top invariant masses at next-to-next-to-leading

logarithmic (NNLL) order and partially at next-to-next-to-next-to-leading logarithmic (N3LL) or-

der in the nonrelativistic expansion and, together with finite lifetime and electroweak effects known

from previous work, analyze their numerical impact on the tt̄ cross section. We show that the phase

space matching contributions are essential to make reliable NRQCD predictions, particularly for

energies below the peak region, where the cross section is small. We find that irreducible back-

ground contributions associated to final states that do not come from top decays are strongly

suppressed and can be neglected for the theoretical predictions.
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I. INTRODUCTION

The measurement of the line shape of the total cross section σ(e+e− → tt̄) for top quark

pair production at energies around the top-antitop threshold (
√
q2 ∼ 350 GeV) constitutes a

major part of the top physics program at a future linear collider (LC). The rise and the form
of the cross section allow for precise measurements of the top quark mass mt in a threshold
mass scheme [1], the top quark width Γt, the top-Yukawa coupling yt and the strong coupling
αs. In view of the expected experimental precision at the LC [2], theoretical uncertainties
for the predictions at the level of dσ/σ ∼ 2− 3% in the peak and the continuum region are
desired [3]. In the energy region below the peak where the cross section is becoming tiny
the theory error should not exceed the level of around 5 fb [2].

From the theoretical perspective the QCD dynamics of the top quark pair for threshold
energies is quite nontrivial since the small relative velocity of the top-antitop pair v ≪ 1
leads to a proliferation of physical scales that need to be accounted for: the top mass
mt, the relative three-momentum p ∼ mtv and the nonrelativistic kinetic energy E ∼
mtv

2 of the top quark pair. In the standard QCD perturbative expansion singular terms
∝ (αs/v)

n and ∝ (αs ln v)n arise from the ratios of these scales. Since the Coulomb-like
dynamics enforces the power-counting v ∼ αs(mtv) the proper treatment of these terms
requires resummations within a power-counting framework with a simultaneous expansion
in v ∼ αs ≪ 1. This can be achieved with nonrelativistic QCD (NRQCD), a low-energy
effective field theory (EFT) of QCD that separates the different quantum fluctuations that
are relevant for the kinematic situation of heavy nonrelativistic quark pairs. Within the
fixed-order approach, which achieves a systematic summation of terms ∝ αn

s v
m, complete

NNLO predictions (i.e. n+m ≤ 3) have been made [1]. For available NNNLO results we refer
to Refs. [4–12]. Using a proper low-scale short-distance threshold mass scheme with cut-off
scale R ∼ mtαs [13–16] (which avoids the pole mass renormalon) the energy where the cross
section rises is stable in perturbation theory. However, the fixed-order predictions suffer
from large normalization uncertainties at the level of 10-20 % which indicate potentially
large logarithmic terms. These normalization uncertainties are particularly problematic for
measurements of the top width and the Yukawa coupling yt. This problem of potentially
large logarithmic terms is addressed in renormalization group improved NRQCD calculations
of the cross section, which account for a systematic summation of terms ∝ αn

s v
m lnk v.

Renormalization group improved QCD results are fully known at NLL order (i.e. n + m −
k ≤ 2). At NNLL order (i.e. n + m − k ≤ 3) all ingredients are known except for the
NNLL renormalization group evolution of the Wilson coefficient of the leading order top
pair current [17–19]. Partial results for the NNLL order anomalous dimension of the current
have been computed in Ref. [4, 20]. At the present stage renormalization group improved
results have a normalization uncertainty of 6-10 % [19, 21].

Electroweak effects and in particular the top quark decay play an equally important role.
Already at leading order it is important to account for the top decay width since it widens
the top-antitop bound state resonances and turns the threshold cross section into a smooth
lineshape. Despite this fact the determination of subleading electroweak and finite lifetime
effects have received somewhat less attention in the literature in the past. Theoretically, for
predictions of an inclusive cross section the top width acts as an infrared cutoff for the top
energy and thus allows for a perturbative computation for all threshold energies. We have
Γt ≈ (GF/8

√
2π)m3

t ≈ 1.5 GeV, which scales like g2
2mt ∼ g2

1mt where g1 and g2 are the U(1)
and SU(2) couplings, and we also find numerically that Γt ∼ mtα

2
s. With g2

1 ∼ g2
2 ∼ αs it is
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therefore natural to adopt the power-counting

v ∼ αs ∼ α
1/2
qed ≪ 1 (1)

when making perturbative theoretical predictions.
Electroweak interactions are responsible for various effects that can be categorized into

four classes: (a) “Hard” electroweak effects, which includes hard, point-like corrections
related to the tt̄ production mechanism by virtual photons and Z exchange, as well as
electroweak corrections to the hard matching conditions of the NRQCD operators and po-
tentials, (b) electromagnetic effects for the luminosity spectrum of the e+e− initial state,
(c) electromagnetic corrections to the low-energy nonrelativistic dynamics of the tt̄ pair and
its decay products and (d) effects related to the finite top quark lifetime. The corrections
from class (a) can be determined by standard methods through matching for top quarks
in the on-shell limit and are real numbers. Up to NNLL order they have been discussed
and implemented in Ref. [22]. Earlier work can be found in Refs. [23, 24]. The QED beam
effects from class (b) are taken into account by a convolution of the “partonic” cross section
with an on-shell e+e− pair in the initial state with the collider’s luminosity spectrum. The
luminosity spectrum accounts for initial state radiation, the accelerator-dependent beam
energy spread and the beam-strahlung, and effects coming from beam-beam interactions.
Since the luminosity spectrum is for the most part determined either experimentally or from
experimental simulations we do not consider it any further in this work. The photon in-
teractions of the tt̄ pair belonging to class (c) are quite similar to the gluonic corrections
and can be incorporated in the same way into NRQCD through potentials and ultrasoft
interactions. The most important of these effects are the QED corrections to the Coulomb
potential contributing at NLL order.

The finite lifetime effects of class (d) are the main purpose of this work. A proper treat-
ment of instability effects entails that for the definition of the cross section, final states
compatible with the top decay chains are accounted for. Since this necessarily also includes
final states that do not arise from top decays, but are experimentally indistinguishable, the
cross section - and potentially also the theoretical methods to compute it - are dependent
on what selection prescriptions are employed. In general, as long as selection cuts do not
reject final states that can arise from the decay of a top and an anti-top quark with a
small off-shellness compatible with the power counting of a nonrelativistic (anti-)top quark
propagator1, they can be implemented through imaginary contributions to the Wilson co-
efficients of the NRQCD operators. This means that the top decay products are integrated
out together with the information on the selection cuts. The resulting NRQCD Lagrangian
is formally non-Hermitian. The cross section can then be obtained via the optical theorem,
i.e. from the imaginary part of the e+e− → e+e− forward scattering amplitude [25–27]. In
this work we adopt this inclusive approach.

One can distinguish two different types of imaginary contributions to the NRQCD Wilson
coefficients: (1) contributions arising from cuts of full theory diagrams through top decay
final states and (2) contributions describing the selection prescriptions, which we will also
frequently refer to as cuts in the following. 2 The type-1 contributions describe decays of
(anti)top quark modes that are propagating in NRQCD. In the matching procedure they

1 We call such selection prescriptions “inclusive” throughout our work.
2 The different meanings of the word “cut” used frequently in this work should be clear from the context.
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arise from cuts of full theory diagrams through (anti)top decay final states. The leading
type-1 NRQCD term is the well known on-shell width contribution,

δL =
∑

p

ψ†
p

i

2
Γt ψp +

∑

p

χ†
p

i

2
Γt χp , (2)

which in the matching procedure comes from the bW cut of the full theory top quark on-shell
self-energy, and which contributes at leading-log (LL) order in NRQCD. Here Γt is the top
quark on-shell width, and ψp and χp represent Pauli spinor field operators that destroy top
and antitop quarks, respectively. This term leads to the NRQCD (anti)top propagator of
the form

i

p0 − p2

2mt
+ iΓt

2

(3)

and can be readily implemented into computations for stable top quarks supplemented by
the replacement rule E → E + iΓt, where E =

√
s − 2mt is the c.m. energy with respect

to the two-particle threshold [25, 26]. The type-1 contributions to the Wilson coefficients
up to NNLL order and neglecting the width of the W-boson were determined in Ref. [27].
As a new higher order feature these include interference contributions from double-resonant
(e+e− → tt̄ → bb̄W+W−) and single-resonant (e+e− → tb̄W− , t̄bW+ → bb̄W+W−) am-
plitudes as illustrated in Fig. 1. Electroweak gauge-invariance is maintained during the
matching procedure by the inclusion of the imaginary contribution of the top quark wave
function renormalization Z-factor arising from the bW intermediate state in the top self-
energy of the full theory.

An important new theoretical aspect is the emergence of imaginary anomalous dimen-
sions caused by UV-divergences in the NRQCD tt̄ phase space integrations [27]. These
UV-divergences originate from the Breit-Wigner behavior of the top and antitop propaga-
tors of Eq. (3) which, upon being cut, lift the on-shell dispersion relation p0 = p2/2mt.
In the forward scattering amplitude these propagators allow (anti)top intermediate states
contributing to the NRQCD cross sections which have arbitrarily large invariant mass.
Once v2-suppressed NNLL order operators are inserted, this behavior causes UV-divergences
which are compensated by imaginary counter-terms associated with (e+e−)(e+e−) forward-
scattering operators. The resulting NLL order imaginary anomalous dimensions of the
Wilson coefficients of the (e+e−)(e+e−) forward-scattering operators sum ln v terms from
the top decay phase space. It was shown in Ref. [27] that the type-1 contributions to the
imaginary parts of the NRQCD Wilson coefficients are numerically important for the nor-
malization of the cross section and for the correct prediction of the c.m. energy of the tt̄
quasi-resonance peak. The existence of phase space divergences in NRQCD inclusive cross
section computations for top pair production at threshold indicates that - due to the finite
lifetime - predictions beyond the leading order approximation need additional short-distance
information to be defined unambiguously. This short-distance information is provided by
the experimental selection criteria for the final states that are accounted for the cross section
determination, and also incorporate background contributions related to diagrams without
an intermediate tt̄ pair.3 In NRQCD this phase-space short-distance information is incor-
porated in the imaginary contributions to the Wilson coefficients of type-2 we have already

3 Also outside the framework of effective theories such selection criteria are in general necessary, and
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FIG. 1: Interference of the double-resonant diagram with a single-resonant one, as described in

the full and effective theories. The (grey) blob in the tt̄ production vertex in the EFT diagram

represents the NNLL matching condition which results from integrating out the lower b̄W− loop.

The cut through this vertex represents the contribution of the absorptive part of the matching

condition in the optical theorem. The (red) dashed line means we extract the imaginary part of

the forward scattering amplitude or, equivalently, that we perform the phase space integration over

the particles in the cut. Note that we use double lines for representing the top quarks.

mentioned above. We call the computation of these contributions the “phase space match-
ing” procedure. Many different feasible inclusive cross section definitions can be devised.

In this work we determine and analyze the type-2 imaginary contributions to the NRQCD
Wilson coefficients at NNLL and N3LL order for cuts on the invariant masses of the recon-
structed top and antitop quarks, Mt and Mt̄, respectively. For simplicity we neglect the
width of the W bosons and combinatorial background in the reconstruction. The combi-
natorial background can be estimated from Monte-Carlo simulations. We demonstrate that
for moderate top invariant mass cuts

|Mt,t̄ −mt| ≤ ∆Mt (4)

with ∆Mt ∼ 15 − 35 GeV, the phase space matching conditions are dominated by the
NRQCD phase space contributions, i.e. they can be computed from the difference between
the (potentially) divergent NRQCD phase space integrations without any cuts and the ones
with the cuts in Eq. (4) being imposed. This is because using the MS scheme in NRQCD
diagrams involving the unstable top propagator of Eq. (3) largely overestimates the contribu-
tions from unphysical phase space regions that are parametrically away from the potential,
soft and ultrasoft regions that can be described by NRQCD.4 Thus the main numerical ef-
fect of the phase space matching procedure is to remove these unphysical contributions and
the phase space matching procedure can be carried out within NRQCD itself. The remain-
ing hard contributions, which require the evaluation of multi-leg full theory diagrams, are
smaller than 5 fb and can be neglected in view of the expected experimental precision. This
simplifies the computations substantially and makes the determination of higher order QCD
corrections feasible. Since one can assume that the situation is similar for the threshold pro-
duction of other heavy unstable colored particles in new physics models, it is straightforward
to generalize our results for such processes, also for the hadron collider environment.

prescription-free cross section definitions for unstable particle production do no exist. The numerical

impact of the selection prescriptions can, however, be frequently neglected if the width of the involved

particles is much smaller than other relevant kinematic scales.
4 A similar feature arises also for the computation matching conditions within NRQCD for a stable quark,

see Ref. [28] for a comparison of a cutoff scheme with MS.
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An important conceptual aspect of the invariant mass cuts defined in Eq. (4) is that
already for moderate cuts ∆Mt ∼ 15 − 35 GeV the cut ∆p on the nonrelativistic (anti)top
three-momentum p is ∆p ∼

√
2mt∆Mt ∼ 100 GeV, and thus represents a hard scale of

the order mt. This justifies the implementation of the phase space effects into the matching
conditions of the Wilson coefficients. From a technical point of view, the method of compu-
tating the phase space matching conditions within NRQCD is quite similar to using a cutoff
scheme to regularize ultraviolet (UV) divergences in loop diagrams for the renormalization.
The procedure therefore leads to power-counting breaking effects which could spoil the non-
relativistic expansion. We find that this is not the case partly because the momentum cutoff
∆p is still sufficiently smaller than the top mass mt. In analogy to the usual renormalization
and matching computations beyond the one-loop level, the phase space matching procedure
also requires the determination of phase space matching coefficients of subdiagrams at higher
orders in the loop expansion. Many technical details of the calculations carried out in this
work are given in Ref. [29].

The outline of this paper is as follows: In Section II we review the NRQCD framework
which we use to describe the top-antitop resonance region, and collect previous results on
electroweak and finite lifetime effects in the cross section. In Section IIIA we discuss the
main concepts of the NRQCD phase space matching procedure with special emphasis on the
definition of the inclusive cross section. In Section IIIB we compute the imaginary type-2
matching conditions for the Wilson coefficients of the (e+e−)(e+e−) forward scattering op-
erators with αs = 0 and a cut ∆Mt on the reconstructed invariant masses of the top and
antitop quarks, including also O(v2) relativistic corrections. The structure of the nonrela-
tivistic expansion of the phase space matching contributions for the inclusive NRQCD cross
section is examined in Sec. IIIC by a comparison with the full Standard Model tree-level
predictions for the processes e+e− → tt̄→ bb̄W+W− and e+e− → bb̄W+W− obtained from
Madgraph [30]. The O(αs) QCD corrections to the phase space matching conditions arising
from ultrasoft gluon exchange and potential interactions are computed in Sec. IV. The cal-
culations allow to determine the complete set of NNLL phase space matching contributions
and of a part of the N3LL corrections. The results are discussed in detail and analyzed
specifically with respect to the convergence of the αs-expansion, and we also discuss non-
perturbative effects. Details on the computation of the O(αs) ultrasoft corrections to the
phase space matching coefficients are relegated to Appendix A. Finally, in Sec. V, we analyze
the numerical impact of the phase space matching contributions to the inclusive NRQCD
cross section and compare their size to the other types of electroweak and finite lifetime
corrections. Readers only interested in the main concepts of the phase space matching and
the numerics of the final results might jump from here directly to Sec. IIIA and then to
Sec. V.

II. NRQCD FORMALISM AND PREVIOUS RESULTS

For the work in this paper we use the vNRQCD effective field theory formalism [31–33] to
describe the nonrelativistic top-antitop dynamics relevant for the inclusive threshold cross
section. In this section we briefly review the basic vNRQCD notation and ingredients with
special emphasis on electroweak and finite lifetime effects in the cross section. We also outline
the previous results concerning the type-1 imaginary contributions to the vNRQCD Wilson
coefficients determined in Ref. [27]. We note that the results are general and can in principle
also be implemented with minimal notational modifications within other formalisms such as
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pNRQCD [34].

Basics:

The vNRQCD Lagrangian contains heavy quark bilinear, potential, soft and ultrasoft oper-
ator terms. Up to the NNLL order the bilinear terms read

Lbilinear(x) =
∑

p

ψ†
p
(x)

{
iD0 − (p− iD)2

2mt

+
p4

8m3
t

+
i

2
Γt

(
1 − p2

2m2
t

)
− δmt

}
ψp(x)

+ (ψp → χp) , (5)

where the fields ψp and χp destroy top and antitop quarks with label momentum p, and Γt

is the top quark width defined at the top quark pole. The velocity counting of the (anti)top

quark fields for d = 4 is ψp ∼ χp ∼ v3/2. The term ∝ Γt
p

2

2mt
is the top lifetime dilation correc-

tion. We also included the ultrasoft gauge covariant derivative Dµ = (D0,−D) = ∂µ + igAµ

where Aµ is the ultrasoft gauge field. The dependence on Dµ is directly tied to the (anti)top
three-momentum label p to all orders of perturbation theory through reparametrization in-
variance [35]. We use the v-counting D0 ∼ mtv

2 ∼ Γt, and the ultrasoft interactions start
contributing in matrix elements at N3LL order. The term δmt is a residual mass term which
is of order v2 in a short-distance threshold mass scheme [1]. The LL order terms in Eq. (5)
lead to the top/antitop propagator in Eq. (3).

The leading order potential term contains the well known Coulomb interaction,

Lpot = −
∑

p,p′

V(s)
c (ν)

(p− p′)2
ψ†

p′ψpχ
†
−p′χ−p , (6)

where

V(s)
c (ν) = −4πCFαs(mtν) (7)

is the Coulomb Wilson coefficient for a color singlet heavy quark pair and ν is the vNRQCD
velocity renormalization scale. The velocity renormalization scale ν is introduced to conve-
niently describe the correlated renormalization group evolution of soft (∼ mtv) and ultrasoft
(∼ mtv

2) effects, and its natural scaling to sum large logarithmic terms is ν ∼ v ∼ αs. The
evolution of the Coulomb Wilson coefficient differs from the running of the strong coupling
starting at NNLL order due to ultrasoft gluon corrections. There are also radiative correc-
tions to the Coulomb interaction arising from soft gluon loops. In vNRQCD they contribute
through matrix elements involving T-products of soft gluon operators. These QCD cor-
rections to the Coulomb potential are known at O(αs) [36] and O(α2

s) [37–39], and have
recently been determined even at O(α3

s) [10–12]. A discussion on the v2-suppressed vN-
RQCD potentials is given in Refs. [32, 33]. We note that there are also potentials generated
by the electroweak interactions. The dominant one is the QED contribution to the Coulomb

potential which can be easily implemented by writing V(s)
c (ν) = −4πCFαs(mtν)−4πα(mtν).

According to Eq. (1) this QED effect contributes at NLL order. There are no O(ααs) QED
NNLL corrections that contribute to the Coulomb potential. There are also higher order
electroweak potentials initiated e.g. by the exchange of the Higgs [6, 40, 41] or the Z-boson.

Eqs. (5) and (6) yield the LL nonrelativistic top-antitop dynamics. For predictions of the
inclusive cross section one important ingredient is the zero-distance Green function. At LL
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order and using dimensional regularization with d = 4−2ǫ, the unrenormalized zero-distance
Green function has the form (a = CFαs)

G0(a, v,mt, ν) =
m2

t

4π

{
i v − a

[
ln

(−i v
ν

)
− 1

2
+ ln 2 + γE + ψ

(
1− i a

2 v

)]}

+
m2

t a

4π

1

4 ǫ
, (8)

where

v =

√√
s− 2(mt + δmt) + iΓt

mt
, (9)

ψ(x) ≡ d/dx ln Γ(x) is the digamma function, and
√
s is the e+e− c.m. energy. The divergent

1/ǫ term in Eq. (8) is a UV-divergence in the real part of the LL order Green function and
does not play any role for the production of stable particles.

Top pair production currents:

Top-antitop pair production and annihilation is described by currents involving the top and
antitop fields. For cross section predictions up to NNLL order one needs the leading and
subleading 3S1 currents Oj

p,1 and Oj
p,2, respectively, and the 3P1 current Oj

p,3, which is p/mt-
suppressed compared to the leading S-wave current. These currents have the form [17, 18]

Oj
p,1 = ψ†

p
σj(iσ2)χ∗

−p
, Oj

p,2 =
1

m2
t

ψ†
p
p2 σj(iσ2)χ∗

−p
,

Oj
p,3 =

−i
2mt

ψ†
p

[σj ,σ · p] (iσ2)χ∗
−p
. (10)

To ensure electroweak gauge invariance at subleading order it is necessary to include the
initial electron and positron fields, which leads to the tt̄ production operators

OV,p,σ =
[
ē+ γj e−

]
Oj

p,σ , OA,p,σ =
[
ē+ γj γ5 e−

]
Oj

p,σ , (11)

where the index j = 1, 2, 3 is summed and the index σ = 1, 2, 3 distinguishes between the
different currents. The current OV,p,1 contributes at LL order for the inclusive cross section,
and OV,p,2 and OV,p,3 contribute at NNLL order. Because the effective theory is constructed
such that it describes tt̄ production only in the threshold region and in the c.m. frame, only
those initial e+e− states5 ac†

τ ′(k′)as
τ † (k)|0〉 are allowed that fulfill s ≡ (k + k′)2 ≈ 4m2

t and
k = −k′. For simplicity we assume electron and positron to travel along the z-direction,
therefore the explicit form of their 4-momenta is

kµ =

(√
s

2
,

√
s

2
êz

)
, k′µ =

(√
s

2
,−

√
s

2
êz

)
, (12)

5 Here, aτ (k) and ac
τ ′(k′) are operators for the annihilation of an electron and a positron with spin τ , τ ′

and 3-momentum k, k′, respectively, and |0〉 is the vacuum state.
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êz being the unit vector in z-direction. The fields e− and e+ in Eqs. (11) are now defined as

e−(x) =
∑

τ,
√

s

aτ (k) uτ (k) e−ik̂·x , e+(x) =
∑

τ,
√

s

ac†
τ (k′) vτ (k

′) eik̂′·x , (13)

where uτ (k) and vτ (k
′) denote Dirac spinors for electron and positron, respectively, and the

momenta k and k′ refer to Eqs. (12). The sum over the c.m. energy
√
s is restricted to the

threshold region. For simplicity we do not sum over the angles of the electron and positron
momenta. The phase factors in Eqs. (13) are defined such that they describe only the tt̄
low-energy fluctuations,

k̂µ =

(√
s

2
−mt,

√
s

2
êz

)
, k̂′µ =

(√
s

2
−mt,−

√
s

2
êz

)
. (14)

The dependence on 3-momenta in Eq. (14) vanishes after the operators OV/A,p,σ have been
applied to the initial e+e− state. The operators for tt̄ annihilation are obtained from OV/A,p,σ

by Hermitian conjugation.
Due to the dependence of the intermediate photon and Z boson propagator on the c.m.

energy in the process e+e− → γ∗, Z∗ → tt̄, we also introduce the tt̄ production operators

O(1)
V,p,1 =

[
ē+ γj (Ê/mt) e−

]
Oj

p,1 , O(1)
A,p,1 =

[
ē+ γj γ5 (Ê/mt) e−

]
Oj

p,1 . (15)

Here, Ê denotes the operator Ê = i∂0 acting on the fields to the right and to the left and
thus picks up the kinetic energy E ≡ √

s−2mt ∼ mtv
2 from the initial e+e− state. So these

operators contribute a NNLL order. Concerning QCD effects, the operators O(1)
V/A,p,1 have

the same matching conditions and renormalization group evolution as OV/A,p,1 of Eqs. (11)
but their Wilson coefficients differ in the electroweak contributions. Similar additional op-
erators related to OV/A,p,2 and OV/A,p,3 do not need to be introduced since they would give
contributions beyond N3LL order.

The contribution of the currents to the Lagrangian reads

Lcur =
∑

p

[
CV,1 OV,p,1 + CA,1 OA,p,1 + C

(1)
V,1 O

(1)
V,p,1 + C

(1)
A,1 O

(1)
A,p,1

+ CV,2 OV,p,2 + CA,2 OA,p,2 + CV,3 OV,p,3 + CA,3 OA,p,3

]
+ H. c. . (16)

If QED radiative corrections are neglected, the electron and positron fields in the current
operators act like classic fields and do not contribute to the nonrelativistic tt̄ dynamics.
The Hermitian conjugation (H. c.) acts on the operators in the usual way and on possible
CP-violating phases in the Wilson coefficients as complex conjugation. It does, however, not
act on imaginary contributions in the Wilson coefficients that are related to finite-lifetime
contributions. Since we do not consider CP-phases in this work, the Wilson coefficients of
operators and their conjugated counterparts are equal. At NNLL order the currents run
only due to QCD effects. Their matching conditions, which we will generally parameterize
at the hard matching velocity scale ν = 1, contain electroweak contributions already at LL
order. Including QCD, electroweak and finite lifetime effects up to NNLL order the Wilson
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coefficients can be written in the form

CV/A,1(Λ, ν) = CBorn
V/A,1 c1(ν) (1 + i δc̃1(Λ)) + i C int

V/A,1(1 + δc̃int
1 (Λ)) + C1loop

V/A,1 ,

C
(1)
V/A,1(ν) = C

(1),Born
V/A,1 c1(ν) ,

CV/A,2(ν) = CBorn
V/A,1 c2(ν) ,

CV/A,3(ν) = CBorn
V/A,3 c3(ν) . (17)

In Eqs. (17) all imaginary contributions are indicated by an explicit factor of the imaginary i.
The terms ci(ν) parameterize the QCD evolution and the hard matching conditions. Their
explicit form at NLL order can be found in Refs. [33, 42, 43]. Note that for the NNLL
running of c1(ν) currently only the non-mixing contributions [4] are fully known. Partial
results for the NNLL mixing contributions have been determined in Refs. [20, 44]. For our
numerical analysis of the phase space matching contributions to the inclusive NRQCD cross
section we need the NNLL order corrections to the matching coefficient c1(ν = 1),

c1(ν = 1) = 1 + h
(1)
1 + h

(2)
1 + . . . , (18)

where

h
(1)
1 = −2CF

π
αs(mt) ,

h
(2)
1 = α2

s(mt)

[
C2

F

(
ln 2

3
− 31

24
− 2

π2

)
+ CACF

(
ln 2

2
− 5

8

)
+
κ

2

]
− 2Q2

t

π
αqed(mt) , (19)

and the constant κ was given in Refs. [45, 46]. The last term in Eq. (19) is the one-loop
QED matching correction to c1(ν = 1), which contributes at NNLL order according to
the power-counting αqed ∼ α2

s. In Eqs. (17) the terms CBorn
V/A,i denote electroweak matching

contributions from the tree level amplitude for the e+e− → γ, Z → tt̄ production process
and C1loop

V/A,1 refers to the hard one-loop electroweak corrections. The results for C1loop
V/A,1 are

elaborate and can be found in Ref. [22] (see also Refs. [23, 24]). The imaginary terms with
C int

V/A,1 contain finite lifetime effects arising from the interference of the dominant double

resonant process e+e− → tt̄→W+W−bb̄ with single resonant processes leading to the same
final state, but having only one top or one antitop at the intermediate stage, see Fig. 1. The
terms C1loop

V/A,1 and iC int
V/A,1 are obtained from one-loop full theory diagrams and contribute at

NNLL order in the counting scheme of Eq. (1) due to an additional factor of α ∼ v2. Thus at
the order we are working they are only accounted for in the leading order current OA/V,p,1.
The terms iδc̃1(Λ) and iδcint

1 (Λ) indicate imaginary matching contributions related to the
experimental selection cuts generically denoted by the argument Λ. As we show in Sec. IVB
they are required to account for a phase space matching correction of tt̄ vertex subdiagrams
that arise at O(αs). For inclusive selection cuts such as the invariant mass prescription of
Eq. (4) this term contributes at N3LL order. To shorten the notation we frequently drop
the matching scale (ν = 1) dependence of the electroweak matching conditions displayed
in Eqs. (17). It is implied that the electroweak couplings are evaluated at the same hard
matching scale as the QCD matching conditions.
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The electroweak matching contributions from the tree level amplitude of the e+e− →
γ, Z → tt̄ production process read [27] (α ≡ αqed(mt))

CBorn
V = −4πα

[
Qt

4m2
t

− vevt

4m2
t −M2

Z

]
, CBorn

A,1 = −4πα
aevt

4m2
t −M2

Z

,

C
(1),Born
V,1 = πα

[
Qt

m2
t

− 16vevtm
2
t

(4m2
t −M2

Z)2

]
, C

(1),Born
A,1 = 16πα

aevtm
2
t

(4m2
t −M2

Z)2
,

CBorn
V,2 = −1/6CBorn

V,1 , CBorn
A,2 = −1/6CBorn

A,1 ,

CBorn
V,3 = 4πα

veat

4m2
t −M2

Z

, CBorn
A,3 = −4πα

aeat

4m2
t −M2

Z

, (20)

where

vf =
tf3 − 2Qfs

2
w

2swcw
, af =

tf3
2swcw

,

the symbol Qf is the electric charge, and tf3 is the third component of the weak isospin of
the fermion f . The abbreviations sw and cw denote the sine and cosine of the weak mixing

angle, respectively. The coefficients C
(1),Born
V/A,1 arise from the O(v2) terms in the expansion of

the photon and Z boson propagators near threshold using s = 4m2
t (1 + E/mt + . . .), where

the dots represent terms of order E2 and higher. An alternative approach is to keep the
exact relativistic form for the photon and Z propagators. This leads to the expressions

CBorn
V,1 = −4πα

[
Qt

s
− vevt

s−M2
Z

]
, CBorn

A,1 = −4πα
aevt

s−M2
Z

,

C
(1),Born
V,1 = 0 , C

(1),Born
A,1 = 0

CBorn
V,2 = −1/6CBorn

V,1 , CBorn
A,2 = −1/6CBorn

A,1 ,

CBorn
V,3 = 4πα

veat

s−M2
Z

, CBorn
A,3 = −4πα

aeat

s−M2
Z

. (21)

For our numerical examinations we use these alternative definitions for CBorn
V/A,i and C

(1),Born
V/A,i

(i = 1, 2, 3) unless noted otherwise.
The imaginary interference coefficients C int

V/A,1 are determined from the bW cuts in the

one-loop electroweak corrections to the e+e− → tt̄ amplitude with on-shell stable external
(anti)top quarks. They also contain the imaginary contribution of the (anti)top wave func-
tion renormalization Z-factor, and this term is essential to maintain gauge-invariance. They
have the form [27]

iC int
V,1 = −i α2π|Vtb|2

12m2
ts

2
wx(4c

2
w − x)(1 + x)

[
3x(1 + x)

(1 − x)

(
1 +

x− 4

4s2
w

)
ln
(2 − x

x

)

+ QeQt(1 − x)(4 − x)(1 + 2x)(1 + x+ x2)

+ Qe(x− 1)(1 + 4x+ 2x2 + 2x3) + Qt(1 − x)(1 + 2x)(1 + x+ x2)

− 1

2
(1 + 12x+ 9x2 + 2x3) +

1

8s2
w

(2 + 41x+ 28x2 − x3 + 2x4)

]
, (22)
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iC int
A,1 = i

α2π|Vtb|2
12m2

ts
2
wx(4c

2
w − x)(1 + x)

[
3x(1 + x)

(1 − x)

(
1 +

x− 4

4s2
w

)
ln
(2 − x

x

)

+ Qt(1 − x)(1 + 2x)(1 + x+ x2)

− 1

2
(1 + 12x+ 9x2 + 2x3) +

1

8s2
w

(2 + 41x+ 28x2 − x3 + 2x4)

]
, (23)

where x ≡M2
W/m

2
t .

Forward scattering operators:

The (e+e−)(e+e−) forward scattering operators are required to renormalize the phase space
divergences. Their evolution accounts for the summation of ln v terms that arise specifically
from finite-lifetime effects. The matching conditions for their Wilson coefficients account
for selection prescriptions applied on the observed final states to define the inclusive cross
section. These phase space matching conditions depend on the c.m. energy, and we there-
fore need to define a set of operators capable to reproduce this energy-dependence within
NRQCD. The forward scattering operators are defined as

Õ(n)
V = −

[
ē− γ

µ e+
] [
ē+ γµ (Ê/mt)

n e−
]
,

Õ(n)
A = −

[
ē− γ

µ γ5 e+
] [
ē+ γµ γ5 (Ê/mt)

n e−
]
, (24)

and thus the Õ(n)
V/A pick up n powers of the tt̄ kinetic energy E =

√
s− 2mt from the initial

e+e− state. The normalization of the electron and positron fields ensures that we have

1

4

∑

τ,τ ′

〈
0
∣∣∣ aτ (k) ac

τ ′(k′) Õ(n)
V/A a

c†
τ ′(k

′) a†τ (k)
∣∣∣ 0
〉

= s

(
E

mt

)n

for the spin-averaged forward scattering amplitude.
The contribution of the forward scattering operators to the Lagrangian reads

Lfsc =
∑

n

C̃
(n)
V Õ(n)

V + C̃
(n)
A Õ(n)

A , (25)

where the C̃
(n)
V/A(Λ, ν) are the Wilson coefficients. They depend on the renormalization

velocity scale ν, and they have a dependence on the selection cuts, generically denoted by Λ.

Frequently we will use the shorter notation C̃V/A ≡ C̃
(0)
V/A for the coefficients of the dominant

energy-independent forward scattering operators ÕV/A. For the examinations in this work

we consider the operators ÕV/A and Õ(1)
V/A.

QCD factorization formula:

For the inclusive cross section of tt̄ production close to threshold accounting for the phase
space matching contributions up to N3LL order and for the QCD and other electroweak and

13



finite lifetime effects at NNLL order we have the factorization formula [18, 22, 27]

σincl(Λ) =
1

s
Llk Im

[(
CV,1(Λ, ν)

2 + CA,1(Λ, ν)
2
)
Alk

1

+
(
2CV,1(Λ, ν)C

(1)
V,1(ν) + 2CA,1(Λ, ν)C

(1)
A,1(ν)

)
(E/mt)Alk

1

+
(
2CV,1(Λ, ν)CV,2(ν) + 2CA,1(Λ, ν)CA,2(ν)

)
Alk

2

+
(
CV,3(ν)

2 + CA,3(ν)
2
)
Alk

3

]

+
1∑

n=0

(E/mt)
n Im

[
C̃

(n)
V (Λ, ν) + C̃

(n)
A (Λ, ν)

]
. (26)

The spin-averaged lepton tensor reads

Llk =
1

4

∑

τ,τ ′

[
v̄τ ′(k′) γl (γ5) uτ(k)

] [
ūτ (k) γk (γ5) vτ ′(k′)

]

=
1

2
(k + k′)2 (δlk − êl

z ê
k
z) , (27)

with the definitions of electron/positron momenta given in Eqs. (12). The quantities Alk
i

are time-ordered products of the tt̄ production and annihilation currents defined in Eq. (10).
Note that the electron and positron field operators, from which the operators in Eqs. (11),
(15) and (24) are composed, only pick out the initial and final e+e− states and do not affect
the correlators Alk

i in any way. The explicit expressions for the Alk
i are

Alk
1 = i

∑

p,p′

∫
d4x e−iq̂·x

〈
0
∣∣∣T Ol

p,1

†
(0)Ok

p′,1(x)
∣∣∣ 0
〉
,

Alk
2 =

i

2

∑

p,p′

∫
d4x e−iq̂·x

〈
0
∣∣∣T
[
Ol

p,1

†
(0)Ok

p′,2(x) + Ol
p,2

†
(0)Ok

p′,1(x)
]∣∣∣ 0

〉
,

Alk
3 = i

∑

p,p′

∫
d4x e−iq̂·x

〈
0
∣∣∣T Ol

p,3

†
(0)Ok

p′,3(x)
∣∣∣ 0
〉
, (28)

where q̂ ≡ (
√
s − 2mt, 0). For the v2-suppressed electroweak and finite lifetime matching

coefficients C1loop
V/A,1 and iC int

V/A,1 contained in CV/A,1 it is sufficient to use the LL current

correlator A1,LL. All terms in the second, third and fourth lines of Eq. (26) are v2-suppressed
and therefore contribute at NNLL order. This suppression originates from factors E/mt,
p2/m2

t appearing in Ok
p,2 and two factors of σ · p/mt appearing in Ok

p,3, respectively. The
terms in the first four lines also appear in pure QCD for stable heavy quarks see e.g. Refs. [17–
19]. The fifth line contains the phase space matching corrections related to the (e+e−)(e+e−)

forward scattering operators. As shown in Sec. III B the coefficients C̃
(0)
V/A = C̃V/A start
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contributing at NLL, and the terms E/mtC̃
(1)
V/A are N3LL corrections. We note that all

terms shown in Eq. (26) are understood as finite MS-renormalized quantities.
We can write Alk

i = δlk/3Ai after tracing the sigma matrices of the currents in 3 dimen-
sions. The correlators Ai can then be expressed in terms of contributions to the zero-distance
S-wave and P -wave Green functions of the two-body Schrödinger equation:

A1(v,mt, ν) = 6Nc

[
Gc(a, v,mt, ν) +

(
V(s)

2 (ν) + 2V(s)
s (ν)

)
Gδ(a, v,mt, ν)

+ V(s)
r (ν)Gr(a, v,mt, ν) + V(s)

k (ν)Gk(a, v,mt, ν)

+Gkin(a, v,mt, ν) +Gdil(a, v,mt, ν)
]
,

A3(v,mt, ν) =
4Nc

m2
t

G1(a, v,mt, ν) . (29)

Here, the terms V(s)
i (ν) (i = 2, s, r, k) are the Wilson coefficients of the v2-suppressed po-

tentials [33]. The correlator A2 can be related to A1 by the heavy quark equation of motion
giving A2(v,mt, ν) = v2A1(v,mt, ν). Thus only the LL terms in A1 are necessary to obtain
the NNLL order contributions of A2. The function Gc is the Coulomb Green function. The
LL approximation for Gc is known analytically and has been displayed in Eq. (8). At NLL
and NNLL order, related to the O(αs) [36] and O(α2

s) [37–39] corrections to the Coulomb
potential, we use the numerical results obtained in Refs. [17, 18]. They are based on an
exact solution of the corresponding Schrödinger equation using computational techniques
developed in Refs. [47, 48]. For the analytic formula for G1, see Ref. [18]. All the relativistic
corrections to the Green function, Gδ,r,k,kin, are available in analytic form, see Refs. [4, 18].
They are computed from insertions of the v2-suppressed potentials and the kinetic energy
corrections. The Green function correction Gdil arises from an insertion of the lifetime dila-
tion correction to the bilinear quark field operators shown in Eq. (5). The expressions for
Gdil reads [27]

Gdil = −i Γt

2mt

[
1 +

v

2

∂

∂v
+ a

∂

∂a

]
G0(a, v,mt, ν) . (30)

Phase space divergences and renormalization group evolution:

Using the unrenormalized current correlators Alk
i in the factorization formula (26) leads

to the ultraviolet 1/ǫ phase space divergences either from insertions of v2-suppressed op-
erators or insertions of Wilson coefficient corrections describing finite lifetime corrections.
The divergences are absorbed by the counterterms associated to the (e+e−)(e+e−) forward
scattering operators ÕV/A given in Eq. (24) and are treated with the usual renormalization
techniques known from effective theories. However, it is a novel feature that the phase space
divergences and the anomalous dimension of the operators ÕV/A are purely imaginary. In the
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MS scheme the NNLL counterterms of the renormalized ÕV/A operators have the form [27]

δC̃V/A = i
Ncm

2
t

32π2ǫ

[
(CBorn

V/A,1)
2 Γt

mt

+ 2CBorn
V/A,1C

int
V/A,1

]
V(s)

c (ν)

+ i
Ncm

2
t

32π2ǫ
(CBorn

V/A,1)
2 Γt

mt

[(
2c2(ν) − 1

)
V(s)

c (ν) + V(s)
r (ν)

]

+ i
Ncm

2
t

48π2ǫ
(CBorn

V/A,3)
2 Γt

mt
V(s)

c (ν) .

Solving the resulting renormalization group equations for the C̃V/A one obtains

C̃V/A(Λ, ν) = C̃V/A(Λ, 1) + i
2Ncm

2
tCF

3β0

{[(
(CBorn

V/A,1)
2 + (CBorn

V/A,3)
2
) Γt

mt

+ 3CBorn
V/A,1C

int
V/A,1

]
ln(z) − 4CF

β0

Γt

mt

(CBorn
V/A,1)

2 ln2(z)

+
4(CA + 2CF )

β0

Γt

mt
(CBorn

V/A,1)
2ρ(z)

}
, (31)

where

ρ(z) =
π2

12
− 1

2
ln2 2 + ln 2 ln(z) − Li2

(z
2

)
,

z ≡ αs(mtν)

αs(mt)
. (32)

Here we have introduced the Λ-dependent hard scale (ν = 1) matching conditions
C̃V/A(Λ, 1).6 They are determined by the phase space matching procedure as described in
the following sections and incorporate the information on the experimental selection cuts as
well as the contributions from background diagrams. The phase space logarithms resummed
in Eq. (31) correspond to logarithmic terms involving ratios of the hard scales mt,Λ and
nonrelativistic kinematic scales. They contribute at order α3 ∼ v6 in the inclusive cross
section. So compared to the LL cross section, which counts as α2v ∼ v5, the phase space
logs constitute NLL contributions. This is expected since the phase space divergences arise
from matrix elements contributing at NNLL order. In the following sections we determine
the matching conditions C̃V/A(Λ, 1), which contain the details of the selection cuts that are
applied for the definition of the cross section. As explained in the introduction, for inclusive
cross section definitions the information on these selection cuts represents hard effects within
the NRQCD framework.

III. CONCEPTS OF PHASE SPACE MATCHING

In this section we discuss the main concepts that go into the phase space matching on
the basis of an explicit computation of the phase space matching conditions for a cut on the

6 Frequently we drop the argument ‘ν = 1’ in the coefficients C̃V/A(Λ, 1) to simplify the notation.
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invariant masses of the reconstructed top and antitop quarks. For simplicity we neglect in
this section the effects of the strong interactions, i.e. we set αs = 0. A number of additional
issues arise if QCD effects are included. QCD corrections to the phase space matching
conditions are computed and discussed in Sec. IV.

A. Basic Setup

We define what we call the invariant masses of the top and antitop quarks through the
reconstructed masses of the bW+ and b̄W− systems coming from the top and antitop decays:

M2
t = p2

t = (pb + pW+)2 , M2
t̄ = p2

t̄ = (pb̄ + pW−)2 . (33)

Without QCD effects related to jet and soft particle emission this definition is unambiguous,
and we neglect combinatorial background in the following. The latter would have to be
determined from Monte-Carlo studies in addition to the examinations carried out in this
work. We consider selection cuts on the top and antitop invariant masses of the form

(mt − ∆Mt) ≤Mt,t̄ ≤ (mt + ∆Mt) . (34)

We note that to keep Eq. (34) ambiguity-free once QCD effects are accounted for, it is
necessary to employ a short-distance top quark mass definition for mt that is suitable for
reconstruction. Such mass definitions have a low infrared cutoff scale R ∼ Γt to avoid the
pole mass O(ΛQCD) renormalon [15]. An example is the jet mass introduced in Refs. [49, 50].
The MS mass does not belong to this class of short-distance masses since it has R ∼ mt.

The constraint on the top and antitop invariant masses Mt,t̄ can be translated into a
condition on the off-shellness p2

t,t̄ − m2
t appearing in the top and antitop propagators, see

Eq. (3). At LL order in the nonrelativistic expansion the constraint on the nonrelativistic
off-shellness in the NRQCD propagator has the form

−∆Mt ≤ pt,t̄,0 −mt −
p2

t,t̄

2mt
≤ ∆Mt . (35)

The relativistic NNLL order corrections to these constraints are given in the second part of
Sec. III B. Through momentum conservation Eq. (35) leads to a constraint on the phase
space integrations for the cross section as illustrated in Fig. 2. From Eq. (35) we see that
the ultrasoft and the soft phase space momentum integrations are limited by the scales ∆Mt

and
√

2mt∆Mt, respectively. In this work we consider moderate invariant mass cuts with
∆Mt ∼ 15 − 35 GeV. Thus we have

mtv
2 <∼ ∆Mt ∼ 15 − 35 GeV , mtv <∼

√
2mt∆Mt ∼ 70 − 110 GeV , (36)

and the upper bounds of integration are substantially above the generic v-scaling of the soft
and ultrasoft momentum components. Since

√
2mt∆Mt is parametrically of order mt we

use for our bookkeeping the counting
√

2mt∆Mt ∼ mt. This also implies that ∆Mt ∼ mt.
Within the vNRQCD framework this counting scheme is natural since, due to the pull-up
mechanism [33, 51], the ultrasoft scale is directly connected to the hard matching scale via
RG evolution without an additional matching at the soft scale. In this counting scheme the
phase space constraints are incorporated through the NRQCD Wilson coefficients. On the
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FIG. 2: Phase space integration region spanned in the pµ = (p0,p) variables for tt̄ pair production.

In terms of pµ and the external energy E =
√

s − 2mt the top and antitop momenta read pµ
t,t̄

=

(mt + E/2, 0) ± pµ. The red solid lines correspond to the top and antitop nonrelativistic on-

shell conditions; in the limit Γt = 0 the phase-space shrinks to the point where the two on-shell

lines intersect, (p0, |p|) = (0,
√

mE). Gray, light-gray and white areas correspond to the double-

resonant, single-resonant and non-resonant regions, respectively. The gray area represents the

phase space region compatible with the invariant mass constraints. We have chosen E = 5GeV

and ∆Mt = 20GeV for this picture.

[
αs=0σincl (Λ) ∼ Im

+ C̃
(1)
V/A(Λ)

]
+ C̃

(0)
V/A(Λ)

+ + +

FIG. 3: Graphical illustration of the factorization formula (26) for αs = 0. The tt̄ production

operators O(n)
V/A,p,σ for σ = 1, 2, 3 are represented by a crossed circle, gray circle and gray box, re-

spectively. Diagrams in the second line correspond to the contributions from the forward scattering

operators.

other hand, numerically the scales ∆Mt and
√

2mt∆Mt are sufficiently below the top mass
scale such that all tt̄ phase space configurations that pass the invariant mass constraint can
still be adequately described by NRQCD. This fact is crucial for the phase space matching
method we describe in the following.

When QCD effects are neglected the factorization formula in Eq. (26) can be illustrated
graphically as in Fig. 3. For αs = 0 and in the absence of potentials the phase space matching

conditions can only contribute to the Wilson coefficients C̃
(n)
V/A of the (e+e−)(e+e−) forward

scattering operators Õ(n)
V/A. This is because off-shell (anti)top phase space contributions

(corresponding to the light-gray and white areas in Fig. 2) do not match to the operator
structure of the (e+e−)(tt̄) currents. From Eq. (26) and Fig. 2 we see that for the determina-

tion of the Wilson coefficients C̃
(n)
V/A we need to know the result for the inclusive cross section
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FIG. 4: (a) Full theory diagram for e+e− → tt̄ → bb̄W+W−. (b,c) Typical single-resonant full

theory diagram for e+e− → tb̄W− → bb̄W+W−. (d) Typical full theory diagram for e+e− →
bb̄W+W− without top or antitop quarks as intermediate states.

σαs=0
incl (Λ) with invariant mass constraints. In the common approach to matching compu-

tations σαs=0
incl (Λ) is computed in the full relativistic theory. After the result is expanded

nonrelativistically using the counting of Eq. (1) one can identify the pieces belonging to the

Wilson coefficients C̃
(n)
V/A. On the other hand, as mentioned above, the tt̄ phase space regions

passing the invariant mass cuts can be determined within the nonrelativistic expansion. We
therefore write the expression for the inclusive cross section as a sum of two terms,

σαs=0
incl (Λ) = σαs=0

NRQCD(Λ) + σαs=0
rem (Λ) . (37)

Here, σαs=0
NRQCD is the cross section computed from NRQCD Feynman rules with the (anti)top

invariant mass constraints being applied for the phase space integration. The parameter Λ
is related to the invariant mass cut ∆Mt and we use the formal counting Λ ∼ mt according
to the discussion above. The exact definition of Λ will be discussed below. In this compu-
tation the (e+e−)(e+e−) forward scattering operators do not contribute, and the resulting
expressions are just the nonrelativistic expansions of full theory squared matrix elements
containing the square of the double resonant diagram e+e− → tt̄→ bb̄W+W− (see Fig. 4a)
and the interference of the double resonant diagram with the diagrams for e+e− → bb̄W+W−

having only either the top or the antitop in intermediate stages (see Fig. 4b and c for typ-

ical diagrams). As we show in Sec. III B, the contributions to the Wilson coefficients C̃
(n)
V/A

that result from σαs=0
NRQCD(Λ) are local (i.e. energy-independent) and only depend on powers

of Γt/mt and Λ/mt. While Γt/mt ∼ v2, which obeys the natural NRQCD counting, the
Λ/mt term is of order unity and can - as we show in Sec. III B - lead to power counting
breaking contributions for insertions of operators that are higher order in the nonrelativis-
tic expansion. However, we find that the numerical effects of the power-counting breaking
contributions are very small and do not spoil the nonrelativistic expansion. This is partly
due to the fact that the phase space cutoff Λ is sufficiently smaller than the convergence
radius of the nonrelativistic expansion. We refer to this feature as “mild” power-counting
breaking.

The remainder contribution of the inclusive cross section, σαs=0
rem (Λ) accounts for all other

contributions to the full theory matrix element. This includes for example pure background
e+e− → bb̄W+W− diagrams, see Fig. 4d for a typical diagram, and also the square of the
single-top diagrams in Figs. 4b and c. In Sec. IIIC we determine the remainder contribution
from a numerical analysis using MadEvent [30]. We demonstrate that the remainder con-
tribution is very small and can be neglected in view of the experimental precision expected
at a future linear collider (see Sec. I). Restricting the MadEvent amplitude to the diagrams
with an intermediate tt̄ pair we also show the excellent approximation that is provided by

19



the nonrelativistic computations in σαs=0
NRQCD.

B. NRQCD Phase Space Matching

In this section we compute σαs=0
NRQCD, the NRQCD cross section for αs = 0 with a cut ∆Mt

on the invariant masses Mt,t̄, see Eq. (34). As explained above, we treat ∆Mt and Λ as a
hard scale.

Leading order diagram:

We start with the leading order NRQCD diagram to set up the notation and explain our
method of computation. Technically, the least involved method to determine the form of the
phase space integral and the proper normalization factors is to use the factorization theorem
of Eq. (26) and apply the cutting rules on the (anti)top propagators in the NRQCD current-
current correlators. After identifying the top and antitop momenta according to Eq. (33) it
is then straightforward to derive the expression for the phase space integral and the phase
space boundaries compatible with the invariant mass constraints.

We start from the form of the leading order current correlator

A0,αs=0
1 (v,mt, ν) = 6NcG

0(a = 0, v,mt, ν)

= 6Nc i

∫
d4p

(2π)4

i(
E
2

+ p0 − p2

2mt
+ iΓt

2

) i(
E
2
− p0 − p2

2mt
+ iΓt

2

) . (38)

It is easy to identify pµ
t,t̄ = (mt + E/2, 0) ± pµ as the top and antitop four-momenta. Using

the cutting rule for the unstable (anti)top propagators

i
E
2
± p0 − p2

2mt
+ iΓt

2

→ −2 Im

[
1

E
2
± p0 − p2

2mt
+ iΓt

2

]
(39)

and recalling the form of the invariant mass constraints in the nonrelativistic limit given in
Eq. (35) we obtain

σ0,αs=0
NRQCD(Λ) =Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

) ∫

∆(Λ)

d4p

(2π)4

Γt(
E
2

+ p0 − p2

2mt
+ iΓt

2

)(
E
2

+ p0 − p2

2mt
− iΓt

2

)

× Γt(
E
2
− p0 − p2

2mt
+ iΓt

2

)(
E
2
− p0 − p2

2mt
− iΓt

2

) , (40)

where ∆(Λ) stands for the phase space constraint

∣∣∣
E

2
± p0 −

p2

2mt

∣∣∣ ≤ ∆Mt (41)

as derived before in Eq. (35). The form of the allowed region in the (p0,p)-plane is shown
in Fig. 2 and a graphical illustration of the computation in Eq. (40) is depicted in Fig. 5.
The expression in Eq. (40) agrees with the result of a full theory cross section computation
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FIG. 5: Leading order diagram for the phase space matching computation. The red dashed line

in the diagram on the LHS means that we cut through the (unstable) top lines and integrate

over the phase space region defined by ∆(Λ). This is equivalent to the full theory cross section

computation from the tree-level matrix element for e+e− → tt̄ → bb̄W+W− (shown on the RHS)

in the nonrelativistic limit. The average over the electron and positron spin states is implicit.

from the tree-level matrix element for e+e− → tt̄ → bb̄W+W− in the nonrelativistic limit.
In this computation one has to first carry out the bW+ and b̄W− phase space integrals as
a function of the top and antitop invariant masses, respectively. The proper nonrelativistic
limit is obtained by setting the invariant masses of the bW+ and b̄W− systems to mt (which
gives two factors of the on-shell width Γt) and by taking the nonrelativistic limit of all other
remaining terms. Upon contraction of all indices in Dirac space and resumming the width
terms into the top propagators - which is required from the counting in the double resonant
kinematic region - one arrives at Eq. (40).

A more compact representation of the tt̄ phase space integral in Eq. (40) is obtained by
switching variables to the nonrelativistic invariant mass variables t1 and t2 defined by

t1,2 = 2mt

(E
2
± p0 −

p2

2mt

)
. (42)

Inverting the relations gives

p0 =
t1 − t2
4mt

, p2 = Emt −
t1 + t2

2
. (43)

Using the Jacobian dp0d
3p = π/(2mt)×

√
mtE − 1

2
(t1 + t2) dt1dt2 the expression in Eq. (40)

takes the form

σi,αs=0
NRQCD(Λ) =Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

)m3
t Γ

2
t

2π3

∫

∆̃(Λ)

dt1dt2

√
mtE − 1

2
(t1 + t2)

(t21 +m2
t Γ

2
t )(t

2
2 +m2

t Γ
2
t )

∆i(t1, t2) ,

(44)

with

∆0(t1, t2) = 1 for σ0,αs=0
NRQCD . (45)

The integration region in (t1, t2)-space has the form

∆̃(Λ) =
{

(t1, t2) ∈ R
2 :
(
|t1,2| < Λ2

)
∧
(
0 < mtE − 1

2
(t1 + t2)

)}
, (46)
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FIG. 6: Allowed phase-space region in the t1 − t2 plane. The left and right panels show the cases

E < 0 and E > 0, respectively. The triangular-shaped blue shaded regions corresponds to the exact

relativistic phase-space region allowed by the kinematics and the invariant mass cuts in Eq. (34).

The orange region located on the upper right of each panel is forbidden since |p| must be real.

The area inside the dashed lines corresponds to the points that pass the conditions (46). When

the relativistic corrections to the cut Λ are included according to Eq. (52), the allowed region is

the one indicated by the dotted lines.

where Λ2 ≡ 2mt∆Mt. In Fig. 6 the allowed region in the t1-t2 plane is illustrated by the
area within the dotted lines for E < 0 (left panel) and E > 0 (right panel). The second
condition in Eq. (46) for t1,2 is from kinematics to ensure real values of the momentum

|p| =
√
mtE − (t1 + t2)/2. Beyond the nonrelativistic approximation the relation between

Λ2 and ∆Mt receives additional relativistic corrections which are discussed below. We have
to evaluate Eq. (44) in a nonrelativistic expansion for

mtE ,mtΓt ∼ m2
t v

2 ≪ Λ2 . (47)

To this end, we carry out an asymptotic expansion based on the four regions (t1, t2) ∼
(m2

t v
2, m2

tv
2) (double resonant), (t1, t2) ∼ (m2

tv
2,Λ2) and (t1, t2) ∼ (Λ2, m2

t v
2) (single reso-

nant), and (t1, t2) ∼ (Λ2,Λ2) (hard). We obtain

σ0,αs=0
NRQCD(Λ) = 2Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

) m2
t

4π

(
Im (iv) − 2

√
2

π

Γt

Λ
+

4 + 2
√

2 sinh−1(1)

3 π2

mtΓ
2
t

Λ3

− 2
√

2

3 π

mtE Γt

Λ3
+ O

(
v6 m

5
t

Λ5

))
, (48)

where v =
√

(E + iΓt)/mt. The first term in the parenthesis is the well known NRQCD
Born cross section obtained from the unrestricted phase space integration. It constitutes
the leading order cross section and is O(v), see Eq. (8) for αs = 0. The second term in
Eq. (48) proportional to Γt/Λ is the dominant phase space correction and of order v2, i.e.
it contributes at NLL order. We also see terms proportional to mtΓ

2
t/Λ

3 and mtEΓt/Λ
3

which contribute at N3LL order. These NLL and N3LL corrections are subtracting the
phase space contributions that do not pass the invariant mass constraints, represented by
the white regions in Figs. 6. One may wonder why these corrections are polynomial in E
and Γt and not a non-trivial function of E/Γt given that this region also has single resonant
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FIG. 7: One-loop renormalization condition for C̃

(n),0
V/A (Λ).

regions where either t1 or t2 are resonant, i.e. of orderm2
t v

2. This can be understood from the
form of the integrand in Eq. (44) which shows that it is impossible to generate a nontrivial
E/Γt dependence if t1 ≫ t2 ∼ m2

t v
2 or t2 ≫ t1 ∼ m2

t v
2. Thus the contributions that arise

from the invariant mass constraints, and in fact all selection criteria that do not cut into the
double resonant phase space region (t1, t2) ∼ (m2

tv
2, m2

t v
2) represent hard contributions that

can be matched onto the local (e+e−)(e+e−) forward scattering operators Õ(n)
V/A. Accounting

for the form of Eq. (26) it is then straightforward to identify the contributions to the Wilson

coefficients C̃V/A(Λ, 1) and C̃
(1)
V/A(Λ, 1). A graphical illustration of the procedure is shown in

Fig. 7. We obtain the results

C̃0
V/A(Λ, 1) = 2 i Nc

(
CBorn

V/A,1

)2 m2
t

4π

(
− 2

√
2

π

Γt

Λ
+

4 + 2
√

2 sinh−1(1)

3 π2

mtΓ
2
t

Λ3

)
, (49)

and

C̃
(1),0
V/A (Λ, 1) = − 2 i Nc

(
CBorn

V/A,1

)2 m2
t

4π

2
√

2

3 π

m2
t Γt

Λ3
. (50)

The coefficients C̃0
V/A(Λ, 1) contribute at NLL order and the C̃

(1),0
V/A (Λ, 1) at N3LL order. The

superscripts “0” are a reminder that QCD corrections are neglected.

Relativistic corrections:

We now determine the phase space matching contributions from O(v2) relativistic corrections
to the NRQCD cross section. Since they come with one additional factor of p2/m2

t , they are
suppressed by v2 according to the counting p ∼ mtv. However, since the imposed invariant
mass constraints act like a hard momentum-cutoff for the NRQCD phase space integration,
power-like dependences involving the cut parameter Λ appear as a consequence of employing
the nonrelativistic expansion. This occurs whenever the nonrelativistic expansion leads to
integrals that are divergent for |p| → ∞. In effective field theory computations where a hard
cutoff regularization is used, this means that once power-counting breaking occurs from the
insertion of a higher dimensional operator O, Wilson coefficients contributing to a lower
order than the operator O might have to be modified during the matching procedure to
the full theory. This happens e.g. in lattice computations and, while it is admittedly not
esthetically elegant, it only represents a technical subtlety from the field theoretic point
of view. For the method we use for the phase space matching, however, the occurrence
of power-counting breaking terms that are numerically large could be disastrous since our
method relies on the assumption that the tt̄ phase space passing the selection cuts can be
computed reliably in the nonrelativistic expansion. This restricts the size of the invariant
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mass cut ∆Mt we can handle within our method for the phase space matching procedure.
We show in Sec. IIIC that for the invariant mass cuts ∆Mt between 15 and 35 GeV which
we consider in this work power-counting breaking effects are very small and do not cause
any problems.

There is an important relativistic effect related to the invariant mass constraint given
in Eq. (41). These corrections modify the bounds on the t1,2 integrations in Eq. (46). To
determine these corrections one needs to solve the equations

(E
2

+mt ± p0

)2

− p2 −
(
mt ∓ ∆Mt

)2

= 0 ,

(E
2

+mt ± p0

)2

− p2 −
(
mt ± ∆Mt

)2

= 0 , (51)

where E =
√
s− 2mt. The condition mtE− 1

2
(t1 + t2) > 0 remains unchanged. The allowed

phase space region in the t1 − t2 plane accounting for all relativistic effects is illustrated by
the blue shaded regions in Fig. 6. Since an exact analytic integration within the relativistic
phase space boundary is not required for the precision aimed for in this work, we derive the
following approximation. The main effect of accounting for the exact boundaries is a change
in the lower boundaries of the t1,2 integrations. The approximation can be made because the
single resonant regions where either t2 or t1 are zero (i.e. the regions close to the negative
x- or y-axes inside the blue shaded areas in Fig. 6) give the largest contributions. For the
determination of the new lower boundary for the t1,2 integration one can take, for example,
the first of the relations in Eqs. (51). Switching to the t-variables and setting for example
t2 = 0, it is straightforward to find the relation

|t1,2| < Λ2 = 2mt∆Mt −
3

4
(∆Mt)

2 − 1

2
E∆Mt + . . . (52)

The associated region in the t1-t2 plane is indicated by the dotted lines in Fig. 6. The
omitted terms in Eq. (52) indicate: (a) terms involving the energy E, which contribute
beyond N3LL order to the cross section and thus can be safely dropped for the range of
energies E considered in our analysis, and (b) terms which give power-counting breaking
contributions similar to those arising from the N4LL order kinetic energy corrections, that
are shown below to be numerically negligible. Apart from the neglected terms in Eq. (52),
the difference between the exact relativistic phase space region (with curved boundaries)
and the approximation given by the dotted lines in Fig. 6, can also be shown to yield terms
beyond N3LL, or terms of type (b).

The other contributions from O(v2) relativistic corrections to σαs=0
NRQCD(Λ) can be cast into
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the form of Eq. (44), where the functions ∆i(t1, t2) read

∆kin,0 = − p4

2m2
t

(
t1

t21 +m2
t Γ

2
t

+
t2

t22 +m2
t Γ

2
t

)
,

∆dil,0 =
p2

m2
t

m4
t Γ

4
t − t21t

2
2

(t21 +m2
t Γ

2
t )(t

2
2 +m2

t Γ
2
t )
,

∆v2,0 =
2CBorn

V,1 CBorn
V,2 + 2CBorn

A,1 CBorn
A,2

(CBorn
V,1 )2 + (CBorn

A,1 )2

p2

m2
t

,

∆P -wave,0 =
2

3

(CBorn
V,3 )2 + (CBorn

A,3 )2

(CBorn
V,1 )2 + (CBorn

A,1 )2

p2

m2
t

,

∆int,0 = −
CBorn

V,1 C int
V,1 + CBorn

A,1 C int
A,1

(CBorn
V,1 )2 + (CBorn

A,1 )2

t1 + t2
mtΓt

. (53)

Here ∆kin,0 comes from the insertion of the kinetic energy correction p4/(8m3
t ) and ∆dil,0

from the time dilation correction −iΓt p
2/(4m2

t ) contained in the quark bilinear Lagrangian

Eq. (5). The term ∆v2,0 comes from the insertions of the v2-suppressed S-wave current Op,2

and ∆P -wave,0 from the P -wave current Op,3, see Eqs. (10). Finally, the function ∆int,0 arises
from interference contributions of the double resonant amplitudes e+e− → tt̄ → bb̄W+W−

with those where only either the top or the antitop appear at intermediate stages, see
Eqs. (22) and (23). Using the methods of the previous subsection to compute the corrections
to the cross section with invariant mass cuts we obtain the following expressions for the

contributions to the Wilson coefficients C̃V/A(Λ, 1) and C̃
(1)
V/A(Λ, 1):

C̃kin,0
V/A (Λ, 1) = 2 i Nc

(
CBorn

V/A,1

)2 5m2
t

32π

( 9

5
√

2π

ΓtΛ
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t
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√
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30π2
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t

mtΛ

)
,

C̃dil,0
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CBorn
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)2 3m2
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16π
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√
2
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+
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√
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)
,
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t
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(√2

π

ΓtΛ

m2
t

+
−2 + 3

√
2 sinh−1(1)

π2

Γ2
t

mtΛ

)
,

C̃P -wave,0
V/A (Λ, 1) =

4

3
i Nc

(
CBorn

V/A,3

)2 m2
t

4π

(√2

π

ΓtΛ

m2
t

+
−2 + 3

√
2 sinh−1(1)

π2

Γ2
t

mtΛ

)
,

C̃ int,0
V/A (Λ, 1) = 2 i Nc 2CBorn

V/A,1C
int
V/A,1

( mtΛ

2
√

2π2
+

−2 + 3
√

2 sinh−1(1)

4π3

m2
t Γt

Λ

)
, (54)
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and

C̃
(1),kin,0
V/A (Λ, 1) = − 2 i Nc

(
CBorn

V/A,1

)2 5m2
t

32π

7√
2 π

Γt

Λ
,

C̃
(1),dil,0
V/A (Λ, 1) = 2 i Nc

(
CBorn

V/A,1

)2 3m2
t

16π

2
√

2

π

Γt

Λ
,

C̃
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V/A (Λ, 1) = −2 i Nc 2CBorn

V/A,1C
Born
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3
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2

π
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Λ
,

C̃
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V/A (Λ, 1) = −4

3
i Nc

(
CBorn

V/A,3

)2 m2
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3
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2
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Λ
,

C̃
(1),int,0
V/A (Λ, 1) = −2 i Nc 2CBorn

V/A,1C
int
V/A,1

1

2
√

2π2

m3
t

Λ
, (55)

where CBorn
V/A,2 = −1/6CBorn

V/A,1. As anticipated for the results contributing to C̃V/A(Λ, 1),

apart from the N3LL terms ∝ Γ2
t/m

2
t , there are in Eq. (54) terms ∝ ΓtΛ/mt that are

power-counting breaking since they contribute at NLL order. These contributions feature a
relative factor Λ2/m2

t = 2∆Mt/mt = 0.15−0.4 with respect to the NLL order terms in C̃0
V/A

of Eq. (49) that come from the cross section in the nonrelativistic limit. For the interference
contributions this statement also applies because C int

V/A,1 ∼ CBorn
V/A,1Γt/mt. The small size of

this factor is one reason why these power-counting contributions do not spoil the quality of
the nonrelativistic expansion.

For visualization we show in Fig. 8, as a function of ∆Mt, the numerical contributions
to the inclusive cross section from the NLL phase space matching coefficients C̃0

V/A(Λ, 1) +

E/mtC̃
(1),0
V/A (Λ, 1) in Eqs. (49) and Eqs. (50) (red solid line), and those from the different

NNLL relativistic corrections, C̃i,0
V/A(Λ, 1) + E/mtC̃

(1),i,0
V/A (Λ, 1) (i = kin, dil, v2, P -wave, int)

given in Eqs. (54) and (55) (blue, green, brown, magenta and cyan dashed lines, respectively).
The difference of dashed lines between left and right panels illustrates the size of N3LL effects

in the E/mtC̃
(1),i,0
V/A (Λ, 1) terms. Note that the various contributions have different signs and

that in Fig. 8 only their absolute value is displayed. For comparison, the solid black line
shows the NRQCD cross section without phase space cuts. The sum of all the contributions
in Eqs. (54) and (55) is displayed as the dotted black line, which almost overlaps with
the interference contributions. We see that except for the interference contributions all
phase space matching corrections in Eqs. (54) are an order of magnitude smaller than those
obtained from the leading order NRQCD cross section in Eq. (49). This shows that the
power-counting breaking terms ∝ ΓtΛ/m

2
t are small and do not spoil the nonrelativistic

expansion. Interestingly, in the sum these phase space matching corrections also cancel to
a large extent due to their different signs. In Fig. 8 we also see that the contributions from
the interference coefficients, C̃ int,0

V/A (Λ, 1), are the by far largest terms that come from NNLL

order relativistic insertions. For ∆Mt > 35 GeV they are comparable to the contributions
of C̃0

V/A(Λ, 1). Since we have numerically that 2CBorn
V,1 C int

V,1 + 2CBorn
A,1 C int

A,1 = −4.7 ((CBorn
V,1 )2 +

(CBorn
A,1 )2) Γt/mt, we see, however, that the large size of the interference terms comes from

the size of the coefficients C int
V/A,1 and is not related to power-counting breaking effects. As

far as the size of higher order relativistic corrections are concerned we thus also expect a
good perturbative behavior for the interference effects.
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FIG. 8: Absolute values of the contributions to the inclusive cross section from the leading order

diagram phase space matching coefficients, C̃0
V/A(Λ, 1) + E/mtC̃

(1),0
V/A (Λ, 1), found in Eqs. (49),

and (50) (red solid line), and those from the different NNLL relativistic corrections, C̃i,0
V/A(Λ, 1) +

E/mtC̃
(1),i,0
V/A (Λ, 1) (i = kin,dil, v2, P -wave, int) given in Eqs. (54) and (55) (blue, green, brown,

magenta and cyan dashed lines, respectively). For comparison we also display the corresponding

contributions from the tree-level NRQCD cross section without phase space matching contributions,

σ0,αs=0
NRQCD(Λ = ∞) = 2Nc ((CBorn

V,1 )2 + (CBorn
A,1 )2)m2

t /(4π) Im(iv) (black horizontal lines). The left

panel corresponds to E = −5 while for the right we have E = 5 GeV. The values chosen for the

input parameters can be found in Eq. (63). We have used the energy-independent form of the

coefficients CBorn
V/A,i and C

(1),Born
V/A,i (i = 1, 2, 3) given by Eqs. (20).

To examine in an example the behavior of power-counting breaking effects from operator
insertions beyond NNLL order we now consider the phase space matching contributions aris-
ing from the N4LL order kinetic energy corrections. These emerge either from two insertions
of the O(v4) kinetic energy operator p4/(8mt)

3 or from one insertion of the O(v6) subleading
kinetic energy operator −p6/(16mt)

5. The respective expressions for the functions ∆i(t1, t2)
read

∆kin,0,2×p
4/(8m3

t ) =
p8

32m4
t

(
3t21 − 5m2

tΓ
2
t

(t21 +m2
t Γ

2
t )

2
+

3t22 − 5m2
t Γ

2
t

(t22 +m2
t Γ

2
t )

2
+

3(t21 + t22) + 8t1t2 + 6m2
tΓ

2
t

(t21 +m2
tΓ

2
t )(t

2
2 +m2

t Γ
2
t )

)
,

∆kin,0,1×p
6/(16m5

t ) = − p2

2m2
t

∆kin,0 , (56)

and the corresponding contributions to the Wilson coefficients C̃V/A(Λ, 1) and C̃
(1)
V/A(Λ, 1)
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FIG. 9: Absolute values of the phase space matching contributions to the inclusive cross section

from the NNLL (from Eqs. (54, 55), blue lines), and N4LL insertions of the kinetic energy operators

(Eq. (57, 58), green lines), as a function of ∆Mt for E = −5 (left panel) and 5 GeV (right

panel). The solid lines show the contributions from C̃V/A(Λ, 1) and the dashed lines show the

contributions for C̃V/A(Λ, 1)+ E/mtC̃
(1)
V/A(Λ, 1). For comparison we also display the corresponding

contributions from the tree-level NRQCD cross section without phase space matching contributions

(black horizontal lines), and the dominant phase space matching corrections from Eq. (49) and

Eq. (50) (red lines). We have used the energy-independent form of the coefficients CBorn
V/A,i and

C
(1),Born
V/A,i (i = 1, 2, 3) given by Eqs. (20).

are

C̃
kin,[2×p

4/(8m3
t )],0

V/A (Λ, 1) = 2 i Nc

(
CBorn

V/A,1

)2 63m2
t

512π

( 53
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√

2 π

ΓtΛ
3

m4
t

+
5 (754 − 483

√
2 sinh−1(1))

1176π2

Γ2
t Λ

m3
t

)
,

C̃
kin,[1×p

6/(16m5
t )],0

V/A (Λ, 1) = 2 i Nc

(
CBorn

V/A,1

)2 −7m2
t

64π

( 11

42
√

2 π

ΓtΛ
3

m4
t

+
514 − 315

√
2 sinh−1(1)

140π2

Γ2
t Λ

m3
t

)
, (57)

and

C̃
(1),[2×p

4/(8m3
t
)],0

V/A (Λ, 1) = 2 i Nc

(
CBorn

V/A,1

)2 63m2
t

512π

115

28
√

2π

ΓtΛ

m2
t

,

C̃
(1),[1×p

6/(16m5
t
)],0

V/A (Λ, 1) = −2 i Nc

(
CBorn

V/A,1

)2 7m2
t

64π

9

2
√

2π

ΓtΛ

m2
t

. (58)

In Eqs. (57) and (58) we have displayed all terms that contribute at NLL and N3LL order.
They all are proportional to powers of Λ/mt and power-counting breaking. In Fig. 9 the
numerical contributions of the kinetic energy corrections to the inclusive cross section from
the NNLL (from Eqs. (54, 55), blue lines) and N4LL insertions (Eq. (57, 58), green lines) of
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the kinetic energy operators are displayed over ∆Mt for E = −5 and 5 GeV. The respective
solid lines show the contributions to C̃V/A(Λ, 1) and the dashed lines show the contributions

to C̃V/A(Λ, 1)+E/mtC̃
(1)
V/A(Λ, 1). For comparison we also display the corresponding contribu-

tions from the tree-level NRQCD cross section without phase space matching contribution,
σ0,αs=0

NRQCD(Λ = ∞) = 2Nc ((CBorn
V,1 )2 + (CBorn

A,1 )2)m2
t/(4π) Re(v) (black lines), and the dominant

phase space matching corrections C̃0
V/A(Λ, 1) from Eq. (49) (red lines). The red dashed lines

account for the energy dependent terms in Eq. (50), that also originate from the leading
order diagram. The results show again that despite the existence of contributions that are
power-counting breaking the numerical impact of these terms is very small. The phase space
matching corrections from the NNLL kinetic energy insertions never exceed the level of a
few fb and those from the N4LL insertions, which are purely power-counting breaking at the
order we consider, are of order 0.01 fb or smaller. Morever we see that the contributions to

C̃V/A(Λ, 1) and to E/mtC̃
(1)
V/A(Λ, 1) coming from NNLL kinetic energy insertions are similar

in size, as would be expected in the absence of power-counting breaking terms. This confirms
that power-counting breaking effects are not of any concern. In particular we see that the
quality of the nonrelativistic expansion is excellent and the corrections from insertions of
higher dimensional relativistic operators are numerically compatible with the nonrelativistic
v-counting.

C. Full Theory Analysis

In this section we analyze results for the inclusive cross section obtained from relativistic
amplitudes in the full theory for αs = 0. In the first part we compare the NRQCD prediction
using the factorization formula of Eq. (26) at NNLL order with the corresponding inclusive
cross section from the full theory accounting only for the amplitude e+e− → tt̄→ bb̄W+W−.
In this case the remainder contribution σαs=0

rem (Λ) vanishes since this amplitude is fully ac-
counted for in the usual NRQCD matrix element and matching computations. We show that
the NRQCD factorization formula provides an excellent approximation to the full theory pre-
diction for invariant mass cuts ∆Mt = 15–35 GeV. We also demonstrate that the NRQCD
prediction in the MS scheme without the phase space matching contributions7 overestimates
by far the full theory predictions. This shows the importance of the phase space matching
procedure and also explains why the NRQCD contributions turn out to be the dominant
terms in the phase space matching corrections. In the second part of this section we compare
the full Standard Model prediction for e+e− → bb̄W+W− with invariant mass cuts with the
NNLL NRQCD prediction including the NRQCD phase space matching contribution. We
demonstrate that, as indicated before, the remainder cross section σαs=0

rem (Λ) is small and
only amounts to at most several femptobarn. For the precision expected for threshold cross
section measurements at a future linear collider the remainder contributions can therefore
be safely neglected. For the full theory computations carried out in this section we use
MadGraph and MadEvent [30]. At this point we note that the amplitudes generated by
MadGraph are at the tree-level and use the fixed-width scheme for the top quark propaga-
tor, i(/p+mt)/(q

2 −m2
t + imtΓt). This expression for the top propagator is the correct form

7 All NRQCD predictions for top pair threshold production that can be found in the previous literature

were carried out in this approximation.
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in the resonance limit and compatible with the nonrelativistic expansion of NRQCD at the
order we are working. We note that a discussion on invariant mass cuts for the threshold
production of a W+W− pair in e+e− collisions based on full theory calculations similar to
the ones given here was presented in Ref. [52]. We also refer to Refs. [53, 54].

Analysis for e+e− → tt̄ → bb̄W+W−:

Since the amplitude for e+e− → γ, Z → tt̄ → bb̄W+W− contains a tt̄ intermediate state,
its contribution in the tt̄ threshold region is fully described in NRQCD. Thus as long as
invariant mass cuts are applied in the region where the nonrelativistic expansion is valid,
the phase space matching contributions can be computed entirely within NRQCD and the
remainder contribution to the cross section, σαs=0

rem (Λ) is zero. Thus the comparison of the
NRQCD prediction of the inclusive cross section with invariant mass cuts based on Eq. (26)
with a fully relativistic tree-level computation based on the same amplitude serves as an
important numerical check of the nonrelativistic expansion and of the NRQCD phase space
matching method. In this section we carry out this check for the tree-level full theory cross
section (i.e. without accounting for one-loop electroweak corrections) and at NNLL order
in the nonrelativistic v-expansion. We note that the amplitude for e+e− → bb̄W+W− is
not gauge-invariant if one includes only the diagrams with a tt̄ intermediate state.8 To be
definite we therefore pick the unitary gauge for all the calculations in this section.

For the relativistic calculations we employ MadGraph for the amplitude generation and
MadEvent with 104 events to numerically compute the cross section with cuts on the top and
antitop invariant masses. For the NRQCD calculation one employs the factorization formula
of Eq. (26) neglecting all QCD effects from matching coefficients and potentials and the real

one-loop electroweak corrections to the Wilson coefficients C1loop
V/A,1 of the (e+e−)(tt̄) current

operators. One also needs to neglect the imaginary interference contributions iC int
V/A,1 to the

Wilson coefficients of the (e+e−)(tt̄) current operators (see Eqs. (22) and (23)) because we
do not account for diagrams with either only a top or an antitop at intermediate stages.
However, there are off-shell corrections to the (anti)top decay from the full theory relativistic
amplitude which in the matching procedure for iC int

V/A,1 are related to the imaginary part of
the top wave-function renormalization constant in unitary gauge. These imaginary matching
contributions have the form [27]

(iC int
V,1)

Zt,uni = −i α2π|Vtb|2
32xm2

t s
4
w(4c2w − x)

[
3QeQts

2
w(4 − x+ 4x2 − 9x3 + 2x4) − 4Qes

2
w(1 − x3)

+ 3Qts
2
w(1 + x2 − 2x3) − 1 + x3

]
,

(iC int
A,1)

Zt,uni = i
α2π|Vtb|2

32xm2
ts

4
w(4c2w − x)

[
3Qts

2
w(1 + x2 − 2x3) − 1 + x3

]
, (59)

and need to be included. The resulting expression for the NRQCD cross section at NNLL

8 In the nonrelativistic expansion the gauge-dependence of the results based only on the amplitude for

e+e− → γ, Z → tt̄ → bb̄W+W− starts at NNLL order.
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order is remarkably simple and has the form

σαs=0,NNLL
NRQCD,t̄t (Λ) = Nc

((
(CBorn

V,1 )2 + (CBorn
A,1 )2

)(m2
t

2π
Im(iv) −

√
2m2

t Γt

π2Λ
− 13ΓtΛ

48
√

2π2

− 3mtΓt

8π
Re(iv) +

7m2
t

48π
Im(iv3)

)

+
(
(CBorn

V,3 )2 + (CBorn
A,3 )2

)(√2ΓtΛ

3π2
+
m2

t

3π
Im(iv3)

)

+
(
CBorn

V,1 (C int
V,1)

Zt,uni + CBorn
A,1 (C int

A,1)
Zt,uni

)(√2mtΛ

π2
+
m2

t

π
Re(iv)

))
, (60)

where the subscript tt̄ is a reminder that for the amplitude only diagrams with a tt̄ pair
in the intermediate state are considered and where we use the s-dependent convention for
the current coefficients CBorn

V/A,i given in Eq. (21). The corresponding LL cross section is just
the well known nonrelativistic lowest order expression which does not contain phase space
matching corrections

σαs=0,LL
NRQCD,t̄t = 2Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

) m2
t

4π
Im (iv) , (61)

and the NLL cross section reads

σαs=0,NLL
NRQCD,t̄t(Λ) = Nc

((
(CBorn

V,1 )2 + (CBorn
A,1 )2

)(m2
t

2π
Im(iv) −

√
2m2

tΓt

π2Λ
− 13ΓtΛ

48
√

2π2

)

+
(
(CBorn

V,3 )2 + (CBorn
A,3 )2

)√2ΓtΛ

3π2

+
(
CBorn

V,1 (C int
V,1)

Zt,uni + CBorn
A,1 (C int

A,1)
Zt,uni

)√2mtΛ

π2

)
. (62)

In the upper panels of Fig. 10 the full relativistic cross section σαs=0
tt̄ (Λ) obtained from

MadEvent (red lines) and the LL (lower green dotted line), NLL (blue dash-dotted lines)
and NNLL order (blue dashed lines) NRQCD cross sections of Eqs. (61), (62) and (60), are
shown for ∆Mt = 15 (left panels) and 35 GeV (right panels). We use the following set of
parameters for the computations:

mt = 172.00 GeV , Γt = 1.4614 GeV ,

MW = 80.419 GeV , MZ = 91.188 GeV ,

cw = MW/MZ , α = 1/132.51 . (63)

We see that the quality of the nonrelativistic expansion is excellent. Moreover, at the scale
of the figures no differences between the full relativistic and the NNLL order NRQCD cross
section are visible. The corresponding lower panels show the difference of the relativistic
and the NNLL NRQCD cross section, ∆σtt̄(Λ) = σαs=0

tt̄ (Λ)−σαs=0,NNLL
NRQCD,t̄t (Λ), which illustrates

the small size of corrections coming from beyond NNLL order in the NRQCD computation.
Here the shaded bands represent the statistical uncertainty of the MadEvent integrations.
(The statistical error is proportional to the cross section value and is therefore increasing
for

√
s > 2mt.) We see that ∆σtt̄(Λ) is at the level of 1− 2 fb for

√
s < 2mt and compatible
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FIG. 10: Upper panels: the full relativistic cross section σαs=0
tt̄

(Λ) obtained from MadEvent (red

lines) and the LL (lower green dotted line), NLL (blue dash-dotted lines) and NNLL order (blue

dashed lines) NRQCD cross sections. The uncut NNLL NRQCD cross section is also shown (upper

green-dotted lines). Lower panels: difference of the relativistic and the NNLL NRQCD cross section

(solid line), shaded bands represent the statistical uncertainty of the MadEvent integrations while

the green dotted lines delimit the theoretical precision goal. We have chosen ∆Mt = 15 for all

panels on the left, and ∆Mt = 35 GeV for those on the right.

with zero within the statistical uncertainty of the MadEvent results for
√
s > 2mt. The

greed dotted lines show the theoretical precision goal we have formulated in view of the
experimental uncertainties expected at a future linear collider. The lines are determined
from the quadratic sum of an energy-independent error of 5 fb and a 2% relative uncertainty
with respect to the full NRQCD inclusive cross section prediction (including QCD effects)
presented in Sec. V. Overall, we find that ∆σtt̄(Λ) is much smaller than the theoretical
precision goal indicated by the green dotted lines and compatible with the size of O(v3)
relativistic corrections. This demonstrates the excellent quality of the NRQCD phase space
matching procedure we propose in this work and it should be adequate for the expected
precision achievable at a future linear collider.

In the upper panels of Fig. 10 we have also shown the NNLL NRQCD cross section without
the phase space matching contributions9 (upper green dotted lines). Except for the wave

9 For αs = 0 and without phase space constraints there are no NLL order corrections, and the LL and NLL
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function contribution in i(C int
V/A,1)

Zt,uni, which contributes less than 15 fb for the displayed
energy range, this represents the approximation which has been used in all previous literature
on the top pair threshold cross section where the top quark instability was accounted for by
the replacement rule E → E+i Γt. We see that without phase space matching contributions
the cross section is overestimated by about 30−50 fb at all energies. The relative discrepancy
to the correct answer is particularly large for

√
s < 2mt where the predictions that only

account for the complex shift E → E + iΓt do not vanish sufficiently fast. This unphysical
feature is related to the fact that the top propagator of Eq. (3) leads to an overestimate of the
contributions from NRQCD phase space regions with large top and antitop invariant masses.
Thus the phase space matching corrections are essential to reach the intended precision goal
for the theoretical predictions.

Analysis for the full amplitude e+e− → bb̄W+W−:

We now consider the fully relativistic Standard Model amplitude for e+e− → bb̄W+W− at
tree-level, σαs=0(Λ). The results allow us to determine the remainder parts of the cross
section, σαs=0

rem (Λ). In the upper panel of Fig. 11 the fully relativistic cross section σαs=0(Λ)

obtained from MadEvent (red line) and the NNLL order NRQCD cross section σαs=0,NNLL
NRQCD,t̄t (Λ)

(blue dashed lines) are shown for ∆Mt = 15 (left panels) and 35 GeV (right panels), where
the parameter set of Eq. (63) has been employed and 104 events have been used for inte-

grations. The analytic formula for σαs=0,NNLL
NRQCD,t̄t (Λ) is just Eq. (60) with the electroweak top

wave function contributions (iC int
V/A,1)

Zt,uni being replaced by the full interference coefficients

iC int
V/A,1 from Eqs. (22) and (23). Up to relativistic corrections beyond NNLL order, which

we neglect in the following discussion, the difference between the relativistic and the NNLL
order NRQCD results is just σαs=0

rem (Λ), which we use to determine the remainder contri-

butions to the phase space matching coefficients C̃0
V/A(Λ) and C̃

(1),0
V/A (Λ). For the invariant

mass cuts ∆Mt = 15 and 35 GeV σαs=0
rem (Λ) is displayed in fb units in the middle panel of

Fig. 11. The shaded region represents the statistical uncertainties of the MadEvent com-
putation. For ∆Mt = 35 GeV σαs=0

rem (Λ) ranges from 0 to 5 fb and increases with the c.m.
energy. For ∆Mt = 15 GeV it is almost energy-independent and below 1 fb for

√
s < 2mt

and compatible with zero within the statistical MadEvent errors for
√
s > 2mt. The re-

sults are fully consistent with a linear dependence in E, which confirms the structure and
NRQCD counting of the (e+e−)(e+e−) forward scattering operators. Overall, the size of
the remainder contributions is much smaller than the theoretical precision goal explained
above and indicated by the green dotted lines. So the remainder part can be neglected
for the theoretical predictions. With Eq. (26) it is straightforward to fit for the remainder

contributions to the phase space matching coefficients C̃0
V/A and C̃

(1),0
V/A . We use an analysis

for ∆Mt = 15, 20, 25, 30 and 35 GeV, and assuming a linear dependence on ∆Mt the result
of this fit reads

(
C̃0

V (Λ) + C̃0
A(Λ)

)rem

= i

[
(−1.2 ± 0.9) fb + (28 ± 6)

∆Mt

mt
fb

]
,

(
C̃

(1),0
V (Λ) + C̃

(1),0
A (Λ)

)rem

= i

[
(−14 ± 25) fb + (260 ± 170)

∆Mt

mt

fb

]
. (64)

NRQCD cross sections agree.
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FIG. 11: Upper panel: fully relativistic bb̄W+W− cross section σαs=0(Λ) obtained from MadEvent

with cut (red line) and without cut (green dotted lines), and NNLL order NRQCD cross section

σαs=0,NNLL
NRQCD,t̄t (Λ) (blue dashed lines). Middle panel: σαs=0

rem (Λ) in fb units with the statistical uncer-

tainties of the MadEvent computation (shaded region), and the theoretical precision goal (green

dotted lines). Lower panel: ∆σnocut(Λ) = σαs=0
nocut − σαs=0,NNLL

NRQCD (Λ) (black solid lines), and the sta-

tistical uncertainties from MadEvent (shaded regions). We have chosen ∆Mt = 15 for all panels

on the left, and ∆Mt = 35 GeV for those on the right.

For the fit we added an energy-independent error of 1 fb to σαs=0
rem (Λ) to account for higher

order relativistic corrections ∝ (E/mt)
n with n > 1.

Total cross section without cuts:

Rather than predicting the inclusive cross section with cuts on the (anti)top invariant masses
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it is also natural to ask about the total cross section for the case that no such cuts are applied
on the bb̄W+W− final state. The phase space matching concept can be also applied in this
case since the difference between the full theory phase space for the cases with and without
invariant mass cuts constitutes again a hard NRQCD effect, much like the difference between
applying cuts of different sizes. This can be easily understood because even without invariant
mass cuts the phase space is constrained by kinematic bounds that in the tt̄ threshold region
(
√
s ≈ 2mt) also represent hard scales of order mt. In the upper panels of Fig. 11 the

green dotted lines represent the full theory bb̄W+W− cross section without any cuts from
MadEvent. The difference ∆σnocut(Λ) = σα=0

nocut − σαs=0,NNLL
NRQCD (Λ) is displayed by the black

solid lines in the lowest panels of Fig. 11 for ∆Mt = 15 (left) and 35 GeV (right). In the
figure the statistical uncertainties from MadEvent are again represented by the gray shaded
regions. In contrast to predictions for the cross section with invariant mass cuts, here, Λ acts
simply as a UV cutoff for the NRQCD phase space integration. Since the cross section is
independent of the cutoff Λ, ∆σnocut(Λ) just compensates the Λ-dependence of the NRQCD
cross section. Applying the same fitting procedure as for Eq. (64) we obtain the following
results for the remainder contributions to the phase space matching coefficients C̃0

V/A and

C̃
(1),0
V/A :

(
C̃0

V (∞) + C̃0
A(∞)

)rem

= i

[
(−18.9 ± 0.9) fb + (−42 ± 6)

∆Mt

mt

fb

]
,

(
C̃

(1),0
V (∞) + C̃

(1),0
A (∞)

)rem

= i

[
(21 ± 26) fb + (90 ± 170)

∆Mt

mt
fb

]
. (65)

Although we do not need the phase space matching coefficients C̃0
V/A(∞) and C̃

(1),0
V/A (∞) for

the predictions intended in this work, we give the results for future reference.

IV. PHASE SPACE MATCHING WITH QCD EFFECTS

In the previous sections we have discussed the concepts of the phase space matching
procedure and computed the phase space matching coefficients neglecting QCD effects. We
have demonstrated that the phase space matching coefficients can be reliably computed
within NRQCD and that the remainder contributions which contain all effects that need
the evaluation of full theory diagrams are small. For the precision goal we need to achieve,
these remainder contributions can be neglected. We have also shown that for invariant mass
cuts ∆Mt = 15–35 GeV, power-counting breaking terms that arise from insertions of higher
order relativistic operators do not spoil the nonrelativistic expansion.

In this section we extend the phase space matching procedure to account for QCD cor-
rections. Due to the additional QCD-induced interactions the required operator structure
is more complicated. Up to NNLL order only the (e+e−)(e+e−) forward scattering opera-
tors already discussed in the previous sections are required. At N3LL order we also need
to account for imaginary phase space matching contributions to the Wilson coefficients of
the (e+e−)(tt̄) top pair production operators to account for non-analytic energy-dependent
terms in the matching relations. As for the previous sections we compute the phase space
matching coefficients within NRQCD. Since for αs = 0 we found the remainder contribu-
tions to the coefficients to be negligible and since no kinematic or dynamical enhancement is
expected for the QCD corrections, we ignore the QCD corrections to the remainder contri-
butions in our analysis. For the determination of the QCD corrections we have to account
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FIG. 12: O(αs) QCD radiative corrections to e+e− → t̄t → bW−b̄W+ originating from (a) time-

like gluon exchange between bb̄-quarks, (b) time-like gluon exchange between tb̄ and t̄b-quarks, (c)

space-like gluon exchange between bb̄, and (d) interference between gluon radiation from b and b̄.

Contribution (e) involving gluon radiation off the nonrelativistic top/antitop lines is suppressed

with respect to the previous ones. The conjugated diagrams have to be added for each case. The

definition of the top momenta pt in terms of the nonrelativistic momenta can be found in Fig. 2.

for the QCD potentials and for the exchange of ultrasoft gluons among the top and antitop
quarks and their decay products. Both types of corrections are analyzed in the following
subsections.

A. Ultrasoft Gluon Exchange and Nonperturbative Effects

In the threshold region ultrasoft gluons, which carry momenta of order mtv
2 ∼ Γt, can

propagate and lead to interactions among the top and the antitop quark and their decay
products. These ultrasoft interactions are sometimes called “QCD interference effects” since
the corresponding Feynman diagrams and their interference contributions all have compa-
rable numerical size. The exchange of ultrasoft gluons starts to contribute at NLL order;
the relevant diagrams at O(αs) in Coulomb gauge are displayed in Fig. 12. It is known that
the QCD interference effects cancel in the total cross section at NLL [55, 56] and NNLL or-
der [27] if no cuts are imposed on the NRQCD phase space. Some of the interference effects
have shown to cancel at NLL also for other inclusive observables where the top energy is
integrated out, for example for the top quark three-momentum distribution [57]. For the top
and antitop invariant masses Mt and Mt̄, on the other hand, the effects of ultrasoft gluon ex-
change are essential because they directly affect the form of the distribution. The invariant
mass distribution is further affected - at leading order - by nonperturbative effects. The pre-
cise way how both effects enter the distribution depends on the details of the reconstruction
prescription, see Refs. [49, 50] for a detailed treatment at large c.m. energies

√
s≫ 2mt. The

situation is, however, considerably simpler for the predictions of the inclusive cross section
with the invariant mass cuts of Eq. (4) for ∆Mt ≫ Γt. Because the inclusive cross section is
an integral over Mt and Mt̄ in the resonance region, the main effects of the ultrasoft gluon
exchange and of the nonperturbative contributions effectively correspond to a shift in ∆Mt
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of order Γt and ΛQCD, respectively. This allows us to estimate that the size of the ultrasoft
and the nonperturbative corrections to the phase space matching coefficients are of order
αsmtΓtΛ

2 and mtΛQCD/Λ
2, respectively, with respect to the dominant NLL contributions

of Eq. (49), which are proportional to Γt/Λ. The form of the nonperturbative corrections
can also be understood from the point of view that there is an operator product expansion
for the inclusive cross section. For the estimate for the ultrasoft gluons we have included a
factor of αs from the coupling of the gluon to the quarks. With ΛQCD ≈ αsΓt and Λ ∼ mt

both effects represent N4LL corrections and are beyond the N3LL order level we consider
in this work. Numerically they are suppressed by two orders of magnitude with respect
to the NLL order phase space matching contributions. To confirm our argumentation for
the ultrasoft corrections we explicitly compute in the appendix the phase space matching
corrections to the (e+e−)(e+e−) forward scattering operators that arise from the diagrams in
Fig. 12. We use the invariant mass definition of Eq. (33) and assume that the ultrasoft gluon
can be resolved. While being not entirely realistic from the experimental point of view, this
prescriptions should nevertheless give the typical size of the ultrasoft corrections. As shown
in the appendix, we find that the ultrasoft phase space matching corrections indeed have
the scaling behavior estimated above. In addition, they have a strong numerical suppres-
sion that make them irrelevant. For the rest of this paper we therefore ignore ultrasoft and
nonperturbative phase space matching corrections.

B. Potential Interactions

We now consider the phase space matching corrections originating from the potential
interactions. Since the phase space matching procedure shares the properties of common
loop graph matching computations, we find that once loop diagrams are involved, we also
have to carry out phase space matching for subdiagrams in order to obtain local results for
the matching coefficients.

We start with the O(αs) contribution to the NRQCD cross section that arises from the
insertion of one Coulomb potential. The diagrams to be considered are depicted on the LHS
of the equality shown in Fig. 13. Following the approach of Sec. III B, the result can be cast
into the form

σ
i,O(αs)
NRQCD =Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

)m3
t Γ

2
t

2π3

∫

∆̃(Λ)

dt1dt2

√
mtE − 1

2
(t1 + t2)

(t21 +m2
tΓ

2
t )(t

2
2 +m2

tΓ
2
t )

∆i(t1, t2) + c.c. ,

(66)

where in comparison to Eq. (44) we have to add the complex conjugate expressions because
the computation involves a loop subgraph either to the left or to the right of the cut. For
the Coulomb potential it is straightforward to derive

∆1(t1, t2) = D
(√

mtE − t1 + t2
2

)
, (67)
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FIG. 13: O(αs) matching condition for the Wilson coefficients of e+e− forward scattering operators.

where (q = |q|, V(s)
c = −4πCFαs ≡ −4πa)

D(q) = µ̃2ǫ

∫
ddr

(2π)d

i
E
2

+ r0 − r2

2mt
+ iΓt

2

i
E
2
− r0 − r2

2mt
+ iΓt

2

−iV(s)
c

(r − q)2

= i a
mt

2q
ln
mtv + q

mtv − q
. (68)

The term D is just the vertex diagram for tt̄ production with one insertion of the Coulomb
potential. Using Eq. (46) for the boundaries of the phase space integration we obtain the
result

σ
i,O(αs)
NRQCD = 2Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

) m2
t

4π
a

[
− Im

[
ln(−i v)

]
− 2

mtΓt

Λ2

− 8
√

2

3π

m2
tΓt

Λ3
Re
[
i v
]
+ O

(
v4m

4
t

Λ4

)]
. (69)

O(αs) Matching for the forward scattering operators:

The first Λ-independent and non-analytic term in the brackets in Eq. (69) is from the well
known O(αs) contribution of the nonrelativistic Coulomb Green function, which contributes
to the LL NRQCD cross section without cuts, see Eq. (8). The second term ∝ αsmtΓt/Λ

2

is local and contributes at NNLL order. Through the phase space matching procedure
using Eq. (26), the second term contributes to the imaginary Wilson coefficient C̃V/A of the

(e+e−)(e+e−) forward scattering operators ÕV/A. The result reads

C̃1
V/A(Λ) = 2 i Nc

(
CBorn

V/A,1

)2 m2
t

4π

[
− 2 a

mtΓt

Λ2

]
, (70)

and constitutes an O(αs) correction to the NLL matching contributions of Eq. (49). The
determination of the O(αs) contributions to C̃1

V/A arising from insertions of higher-dimension

operators and potentials describing relativistic v2-corrections is carried out in analogy. Here
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we just quote the final results and refer to Ref. [29] for details:

C̃r,1
V/A(Λ) = 2 i Nc

(
CBorn

V/A,1

)2 m2
t

4π
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ln
mt
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+
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2
+
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2
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C̃s,1
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C̃kin,1
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(
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ln
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2
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C̃ int,1
V/A (Λ) = 2 i Nc 2CBorn
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int
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[
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ln
mt
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+

1

2
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1

2
ln 2
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, (71)

where the definitions of the coefficients CBorn
V/A,i are given in Eqs. (20) and (21). The coefficients

C̃r,1
V/A and C̃s,1

V/A come from one insertion of the potentials (k = p− p′)

V(s)
r (p2 + p′2)

2m2
tk

2
and

V(s)
s

m2
t

, (72)

where we used V(s)
r (ν = 1) = −4πa and V(s)

s (ν = 1) = 4πa/3, respectively. The origin of
the other coefficients arises from insertions of the kinetic energy correction (kin), the time
dilation correction (dil), the v2-suppressed S-wave current Op,2 (v2), the P -wave current
Op,3 (P -wave) and the interference coefficient (int), as explained already after Eq. (53). The

spin-dependent, momentum-independent potential V(s)
s /m2

t does not lead to a contribution
at the order we consider.10 In analogy to our examinations for αs = 0 we find that the phase
space matching contributions originating from the relativistic insertions also contribute at
NNLL order and are power-counting breaking. They also feature a relative factor Λ2/m2

t

with respect to the terms in C̃1
V/A(Λ) of Eq. (70). Through the numerical analysis of the

C̃i,1
V/A(Λ) coefficients which we carry out in Fig. 14, we find a similar situation as for the case

of the corresponding tree-level matching coefficients C̃i,0
V/A(Λ) studied in Sec. III B: The phase

space matching contributions in C̃1
V/A(Λ) of Eq. (70) are about an order of magnitude larger

than the ones from the relativistic corrections in Eqs. (71), which also cancel each other

10 Since the potential V(s)
s /m2

t is momentum-independent, its insertion leads to a factorized expression for

the correction to the Green function that can only contribute to the phase space matching coefficient δc̃s,1
1

of the S-wave tt̄ current discussed in the following subsection.
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FIG. 14: Absolute values of the contributions to the inclusive cross section from the

O(αs) phase space matching corrections C̃1
V/A(Λ) of Eq. (70) (red lines) and C̃i,1

V/A(Λ), i =

r/dil, kin, v2, P -wave, int (red,blue, brown, magenta and cyan dashed lines, respectively), listed

in Eq. (71). The sum of the C̃i,1
V/A

(Λ) contributions is shown as the dotted black line. For compari-

son we also display the tree-level NRQCD cross section without phase space matching contributions

(black lines). The left panel corresponds to E = −5 while for the right E = 5 GeV. The values

chosen for the input parameters can be found in Eq. (63), and αs = 0.1077. We have used the

energy-independent form of the coefficients CBorn
V/A,i and C

(1),Born
V/A,i (i = 1, 2, 3) given by Eqs. (20).

partly due to their different signs. The cancellation is, however, less effective as for αs = 0
due to the additional contribution coming from the Vr potential. Again, this does not apply
to the contributions from the interference corrections in C̃ int,1

V/A (Λ), which are comparable

to C̃1
V/A(Λ) for ∆Mt >∼ 25 GeV. As explained in Sec. III B before, this behavior is related

to the large size of the interference coefficients C int
V/A,1 and not to power-counting breaking

effects. As far as the size of higher order relativistic corrections are concerned we thus also
find a good perturbative behavior for the O(αs) corrections to the phase space matching
coefficients C̃V/A(Λ).

O(αs) Matching for the tt̄ currents:

Let us now discuss the third term in the brackets on the RHS of Eq. (69) which is ∝ Re[iv].
It is non-analytic in the energy and can therefore not contribute to the phase space matching

coefficients of the (e+e−)(e+e−) forward scattering operators Õ(n)
V/A. This term contributes at

N3LL order and is also of theoretical interest as it illustrates how the phase space matching
procedure is carried out at higher orders. We recall that the phase space matching follows
the common rules of matching computations, where the matching involving diagrams with
a higher number of loops first requires the matching of operators relevant for subdiagrams
in order to deal with all terms that are non-analytic in the external momenta. To deal with
the non-analytic term ∝ Re[iv] in Eq. (69) we need to determine the imaginary phase space
matching term i δc̃1(Λ) contained in the Wilson coefficient CV/A,1 of the dominant S-wave
tt̄ current operators OV/A,p,1, see Eqs. (17).

In the following we compute the contribution to the phase space matching term i δc̃1(Λ)
generated by an insertion of one Coulomb potential, as illustrated in Fig 15. Suppressing the
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FIG. 15: O(αs) matching condition for the Wilson coefficient of a tt̄ production current. The black

dot represents an insertion of a potential operator.

external (anti)top quark spinors and the lepton current the amplitude for the cut diagram
reads

Acur(Λ) =

∫

∆(Λ)

d4p

(2π)4

Γt(
E
2

+ p0 − p2

2mt
+ iΓt

2

)(
E
2

+ p0 − p2

2mt
− iΓt

2

)

× Γt(
E
2
− p0 − p2

2mt
+ iΓt

2

)(
E
2
− p0 − p2

2mt
− iΓt

2

) −iV(s)
c

(p− p′)2
, (73)

where ±p′ is the 3-momentum of the top and the antitop quark in the c.m. frame, respec-

tively, and V(s)
c = −4πCFαs ≡ −4πa. For the determination of the matching condition for

the tt̄ current it is sufficient to consider on-shell external top quarks, and we therefore set
p′2 = mtE, E > 0. By carrying out the angular integration and changing variables we
obtain an intermediate result of the form (44) with (|p| = (mtE − 1

2
(t1 + t2))

1/2)

∆cur(t1, t2) = −iVc
2π

|p|
√
mtE

ln

∣∣∣∣

√
mtE + |p|√
mtE − |p|

∣∣∣∣ . (74)

The evaluation of the remaining integral with the invariant mass restrictions (46) yields

Acur(Λ) = i a

[√
mt

E
Re

[
ln
mtv +

√
mtE

mtv −
√
mtE

]
− 8

√
2

3π

m2
tΓt

Λ3
+ O

(
v4m

5
t

Λ5

)]
. (75)

The first term in the brackets is just twice the imaginary part of the vertex diagram D
defined in Eq. (68) without phase space restrictions

Acur(∞) = 2 i Im
[
D
(√

mtE
) ]

, (76)

and corresponds to the first term on the RHS of the matching relation in Fig. 15. The
second term, on the other hand, gives a contribution to the matching term iδc̃1(Λ), and we
obtain

i δc̃11(Λ) =
1

2
(Acur(Λ) −Acur(∞)) = −i a4

√
2

3π

m2
tΓt

Λ3
, (77)

where the factor 1/2 is to compensate the factor 2 that appears in the optical theorem,
see Fig. 15. It is now straightforward to check that using the matching relation of Fig. 13
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the phase space matching term i δc̃11(Λ) in the Wilson coefficient of the tt̄ current operators
OV/A,p,1 indeed accounts for the non-analytic term ∝ Re[iv] in Eq. (69). This demonstrates
the consistency of the phase space matching procedure at the loop level. We note that
the same coefficient is obtained for the respective annihilation currents. Thus the imaginary
phase space matching coefficients are not affected by the hermitian conjugation of the current
operators in Eq. (16).

The determination of the O(αs) contributions to i δc̃1(Λ) arising from insertions of higher-
dimension operators and potentials describing relativistic v2-corrections is carried out in
analogy. Here we just quote the final results and refer again to Ref. [29] for details:
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√
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4
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4
√
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, i δc̃v
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Γt

Λ
, i δc̃int,1

1 (Λ) = −i a2
√

2

π

mt

Λ
. (78)

Note that the insertion of the current operators OV/A,p,2 gives the mixing term iδc̃v
2,1

1 con-
tributing to the matching condition of OV/A,p,1. An analogous mixing does not arise from
insertions of the P -wave current OV/A,p,3 due to angular momentum conservation. All terms
shown in Eq. (78) are of relative order Λ2/m2

t with respect to the one for the dominant S-
wave current in Eq. (77). In the case of the interference correction this is also true because
C int

V/A,1 ∼ CBorn
V/A,1Γt/mt.

C. Perturbative Expansion and Higher Order Corrections

In Secs. III B and IVB we have computed the O(α0
s) and O(αs) phase space matching

contributions to the (e+e−)(e+e−) forward scattering operators. We have completed all
contributions at NNLL order, and we have demonstrated that power-counting breaking
terms do not spoil the nonrelativistic expansion. For the O(αs) contributions we have also
shown that the Wilson coefficients of the (e+e−)(tt̄) current operators receive phase space
matching terms, which contribute at N3LL order. In this section we examine the αs-series of
the phase space matching contributions. To render the analysis more transparent it is useful
to distinguish the phase space matching contributions according to where they originate in
the computation of the NRQCD cross section σNRQCD(Λ).

Contributions related to the imaginary part of the Coulomb Green function

We first analyze the phase space matching contributions originating from the imaginary part
of the Coulomb Green function Im[Gc] determined in Eqs. (49), (50), (70) and (77). Since the
imaginary part of the Coulomb Green function constitutes the leading order contribution of
the factorization formula (26), these phase space matching terms represent the numerically
dominant contributions. We define the NRQCD cross section associated to the imaginary
part of the Coulomb Green function as

σ
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2
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(79)
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where t1 and t2 are the invariant mass variables of Eq. (42) and fv,mt,ν is the Coulomb vertex
factor. The Coulomb vertex factor can be written in the form

fv,mt,ν(|p|) =

[ |p|2
mt

− (E + iΓt)

]
G̃0

v,mt,ν(0, |p|) . (80)

Here G̃0
v,mt,ν(0, |p|) is the partially Fourier transformed Coulomb Green function with the

first argument in position space at x = 0 and the second in momentum space with the
momentum p. Because of x = 0 there is no dependence on the direction of p. At LL order,
i.e. accounting only for iterations of the LL Coulomb potential of Eq. (6), G̃0

v,mt,ν(0, |p|) is
known analytically:

G̃0
v,mt,ν(0, |p|) = − imt

4k|p|
1

1 − λ

[
2F1

(
2, 1; 2 − λ;

1

2

(
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i |p|
k

))

− 2F1

(
2, 1; 2 − λ;

1

2

(
1 − i |p|

k

))]
, (81)

where k ≡
√

−mt(E + iΓt) and λ ≡ CFαs(mtν)mt/2k, and 2F1(a, b; c; z) is the hypergeo-
metric function. At NLL and NNLL order we use numerical results for the form factor fv,mt,ν

using the computational techniques we also employ for the determination of the Coulomb
Green function at the respective orders, see Refs. [47, 48]. These numerical methods have
been applied and thoroughly tested before for predictions of the top three-momentum dis-
tribution, see e.g. Refs. [28, 48]. Without phase space restrictions, i.e. for Λ = ∞, Eq. (79)
reduces to the form

σ
Im[Gc]
NRQCD(∞) = 2Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

)
Im
[
Gc(a, v,mt, ν)

]
. (82)

In Fig. 16 we display ∆σIm[Gc] = σ
Im[Gc]
NRQCD(Λ)−σIm[Gc]

NRQCD(∞) for ∆Mt = 15 GeV (left panel)
and ∆Mt = 35 GeV (right panel) using the LL (black solid line), NLL (red solid line) and
NNLL (blue solid line) Coulomb Green functions, and the 1S top mass scheme [28, 58] with
mt = 172 GeV. The strong coupling is evaluated at the hard scale ν = 1, αs(mt) = 0.1077
and the other input parameters are given in Eq. (63), except for the electromagnetic coupling
constant, which is also taken at the hard scale αqed(mt) = 1/125.9. For simplicity we neglect
here and in the following examinations of Sec. IVC the hard QCD corrections to the tt̄
current matching coefficient, i.e. we set c1(ν = 1) = 1. The lines for ∆σIm[Gc] represent
the effects of the invariant mass cuts including iterations of the Coulomb potential to all
orders. From our examinations in Sec. IVB we know that ∆σIm[Gc] exhibits hard and soft
contributions that can only be separated by the phase space matching procedure. Thus
∆σIm[Gc] unavoidably contains large logarithmic terms for any choice of the renormalization
scale. The size of the higher order corrections discussed in the following should therefore
be interpreted with some care as they might not reflect the quality of the αs-expansion
when all logarithms are properly summed up. Despite this fact we see that the effects of
including the O(αs) and O(α2

s) corrections to the Coulomb potential in ∆σIm[Gc] show good
convergence. For ∆Mt = 15 GeV (35 GeV) the O(α2

s) corrections to the Coulomb potential
(difference between the red and blue solid lines) lead to a shift between −10 fb (−4 fb) and
−5 fb (−2 fb). For ∆Mt = 15 GeV this exceeds our theoretical precision aim (green dashed
lines in the lower panel of Fig. 10) for

√
s− 2mt <∼ −2 GeV. The shift caused by the O(α2

s)
corrections to the Coulomb potential, however, quickly drops below the precision aim for
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FIG. 16: Contributions to the inclusive cross section from the NLL, NNLL and N3LL order phase

space matching corrections in ∆σ
Im[Gc]
psm (green, brown and black dashed lines, respectively) as a

function of the total center of mass energy for ∆Mt = 15 (left) and ∆Mt = 35 GeV (right).

The solid lines correspond to the phase space matching contributions ∆σIm[Gc] obtained from the

imaginary part of the exact cut Coulomb Green function at LL, NLL and NNLL (black, red and

blue, respectively).

∆Mt > 15 GeV for all values of E, and we conclude that phase space matching corrections
related to insertions of the O(α2

s) corrections to the Coulomb potential, which contribute at
N4LL order and higher, do not have to be considered.

We now examine ∆σIm[Gc] computed from the phase space matching procedure carried
out in the previous sections. Up to the N3LL order it has the form

∆σIm[Gc]
psm = Im

[
C̃0

V (Λ) + C̃0
A(Λ)

]

NLL

+ Im
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C̃1

V (Λ) + C̃1
A(Λ)

]

NNLL

+ Im
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V (Λ) + C̃2
A(Λ) +

E

mt

(
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(1),0
V (Λ) + C̃

(1),0
A (Λ)

)

+ 4Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

)
i δc̃1(Λ)Gc(a, v,mt, ν)

]

N3LL

, (83)

where we have indicated the NLL, NNLL and N3LL order corrections. The results for C̃0
V/A,

C̃1
V/A, C̃

(1),0
V/A and δc̃1 have been given in Eqs. (49), (70), (50), and (77), respectively. The

N3LL corrections depend on the (MS renormalized) real part of the Coulomb Green function
which at this order can be replaced by its LL expression G0, see Eq. (8). Note that for actual
NRQCD predictions the Green function Gc(a, v,mt, ν) in Eq. (83) has to be evaluated with
ν ∼ αs to properly sum large logarithms. As mentioned above, we set ν = 1 for the

following examinations. In Fig. 16 the NLL and the NNLL approximations for ∆σ
Im[Gc]
psm

are displayed as the green and brown dashed lines, respectively. For ∆Mt = 35 GeV (right
panel) we find that the NNLL corrections are about half the size of the NLL contributions.
For ∆Mt = 15 GeV (left panel), where we expect a worse αs-expansion due to the Λ-
dependence of C̃0

V/A ∼ Γt/Λ and C̃1
V/A ∼ amtΓt/Λ

2, the NNLL corrections are only about

15% smaller than the NLL contributions. The difference of ∆σ
Im[Gc]
psm at NNLL order and
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∆σIm[Gc] accounting for the LL Coulomb potential (black solid lines) is between 3 and 7 fb
for ∆Mt = 35 GeV and between 7 and 25 fb for ∆Mt = 15 GeV. For ∆Mt = 15 GeV this
exceeds our theoretical precision aim, visualized by the green dashed line in the lower panel
of Fig. 10. The difference is even larger with respect to ∆σIm[Gc] accounting for the NLL
Coulomb potential (red solid lines). It is therefore required to also account for the full set
of N3LL phase space matching contributions displayed in Eq. (83). Unfortunately, at this
time the full expressions for C̃2

V/A are unknown. They get contributions from two insertions

of the leading Coulomb potential (contained in the LL Coulomb Green function) and from
one insertion of the O(αs) correction to the Coulomb Green function (contained in the NLL
Coulomb Green function). We have computed the contribution from two insertions of the
Coulomb potential using the methods described in Sec. IVB. The result reads

C̃2,VcVc

V/A (Λ) = 2 i Nc (CBorn
V/A,1)

2 m
2
t

4π

[
a2 4

√
2

3π

(
ln
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Λ2

)
− 7

3
− π2

4
+

2

3
ln 2

)
m2

t Γt

Λ3

]
. (84)

The logarithmic term is related to a NNLL order contribution to the imaginary anomalous
dimension of C̃V/A(Λ, ν). The fact that the logarithm vanishes for µ = Λ ∼ mt reconfirms
that the phase space matching contributions are hard effects. Although we do not have
the complete result for C̃2

V/A(Λ), using instead the result of Eq. (84) allows us to compare

∆σ
Im[Gc]
psm at N3LL order (black dashed lines) with the numerical results for ∆σIm[Gc] account-

ing for the LL Coulomb Green function (black solid lines). We see that including the N3LL
phase space matching contributions leads to a considerably improved agreement with the
Coulomb resummed numerical results. For ∆Mt = 15 GeV and 35 GeV the difference is
always smaller than 5 fb, except when E < −5 GeV for ∆Mt = 15 GeV. Since this is
acceptable for our precision aim, we believe that the full set of N3LL phase space matching
corrections should be adequate for the precision expected at a future linear collider. Since
the full result for C̃2

V/A(Λ) is unknown, we use for the time being as a substitute for the N3LL

order terms in ∆σ
Im[Gc]
psm the numerical Coulomb-resummed expression of Eq. (79), evaluated

with the NLL Coulomb vertex factor at the hard scale for αs minus the NLL and NNLL
order terms of Eq. (83):

(∆σIm[Gc]
psm )N3LL =σ

Im[Gc]
NRQCD(Λ, 1) − Im

[
C̃0

V (Λ) + C̃0
A(Λ)

]

NLL

− Im

[
C̃1

V (Λ) + C̃1
A(Λ)

]

NNLL

.

(85)

Contributions related to the real part of the Coulomb Green function

We now analyze the phase space matching contributions related to the real part of the
Coulomb Green function. These phase space matching contributions are proportional to
the type-1 imaginary Wilson coefficients iC int

V/A,1 in Eqs. (22) and (23), which describe the

interference of the e+e− → tt̄ → bb̄W+W− diagram with diagrams for e+e− → bb̄W+W−

with only either t or t̄ at intermediate stages. As we have shown in Sec. III B, the interference
effects cause the largest phase space matching contributions among the O(v2) relativistic
corrections in the factorization formula (26), and we therefore examine them separately. In
analogy to the previous section we first define the Coulomb-resummed NRQCD cross section

45



338 340 342 344 346 348 350

-20

-10

0

10

s HGeVL

D
Σ
H
fb
L

338 340 342 344 346 348 350

-20

-10

0

10

s HGeVL

D
Σ
H
fb
L

FIG. 17: Contributions to the inclusive cross section from the NLL, NNLL and N3LL order phase

space matching corrections in ∆σ
Re[Gc]
psm (green, brown and black dashed lines, respectively) as a

function of the total center of mass energy for ∆Mt = 15 (left) and ∆Mt = 35 GeV (right). The

black solid lines correspond to the phase space matching contributions ∆σRe[Gc] obtained from the

real part of the exact cut Coulomb Green function at LL.

with invariant mass restrictions arising from the real part of the Coulomb Green function:

σ
Re[Gc]
NRQCD(Λ) = 2Nc

(
CBorn

V,1 C int
V,1 + CBorn

A,1 C int
A,1

)
Γ2

t

∫

∆(Λ)

d4p

(2π)4

(2mt)
4

(t21 +m2
t Γ

2
t )(t

2
2 +m2

t Γ
2
t )

×
[
−t1 + t2

2mtΓt
Re [fv,mt,ν(|p|)] − Im [fv,mt,ν(|p|)]

]
. (86)

Since the interference contributions are related to O(v2) operator insertions in the factoriza-
tion theorem (26), we only consider the vertex factor in the LL approximation as given in
Eq. (80). The expression in the brackets involves the Coulomb-resummed generalization of
the function ∆int,0 given in Eqs. (53). The corresponding phase space matching contributions
at N3LL order can be derived from Eq. (26) and read

∆σRe[Gc]
psm = Im

[
C̃ int,0

V (Λ) + C̃ int,0
A (Λ)

]

NLL

+ Im

[
C̃ int,1

V (Λ) + C̃ int,1
A (Λ)

]

NNLL

+ Im

[
C̃ int,2

V (Λ) + C̃ int,2
A (Λ) +

E

mt

(
C̃

(1),int,0
V (Λ) + C̃

(1),int,0
A (Λ)

)

+ 4Nc

(
CBorn

V,1 C int
V,1 + CBorn

A,1 C int
A,1

)
i δc̃int,1

1 (Λ)Gc(a, v,mt, ν)

]

N3LL

, (87)

where we have again indicated the NLL, NNLL and N3LL order corrections. The results

for the C̃ int,0
V/A , C̃ int,1

V/A , C̃
(1),int,0
V/A and δc̃int,1

1 have been given in Eqs. (54), (71), (55) and (78),

respectively. The results for C̃ int,2
V/A are currently unknown. In the following analyses we

neglect them, i.e. we set them to zero.
In Fig. 17 the numerical LL Coulomb-resummed phase space effects ∆σRe[Gc] ≡

σ
Re[Gc]
NRQCD(Λ)−σRe[Gc]

NRQCD(∞) (solid black lines) and the corresponding NLL (green dashed lines),
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NNLL (brown dashed lines) and N3LL (black dashed lines) approximations from the phase
space matching procedure are shown. The left panel refers to ∆Mt = 15 GeV and the right
panel to ∆Mt = 35 GeV. The strong and QED couplings are again evaluated at the hard
scale ν = 1, i.e. αs(mt) = 0.1077 and αqed(mt) = 1/125.9, and the other input parameters are
given in Eq. (63). As in the previous subsection we again neglect the hard QCD corrections
to the tt̄ current matching coefficient, i.e. we set c1(ν = 1) = 1. The situation we find is quite
similar to the one discussed before for the imaginary part of the Coulomb Green function.
The NLL order phase space matching contributions amount to around −13 (−20) fb, and
the NNLL order contributions to about +18 (+15) fb for ∆Mt = 15 (35) GeV. The NNLL
corrections are quite sizeable and even exceed the NLL contributions for ∆Mt = 15 GeV.
It is conspicuous that the NLL and NNLL phase space matching corrections have opposite
signs and cancel each other to a large extent. The sum of the NLL and NNLL phase space
matching corrections differ from ∆σRe[Gc] by at most 5 fb. The N3LL order phase space
matching corrections, on the other hand, are much smaller than the NLL and NNLL order
ones. Although we have neglected the C̃ int,2

V/A , which arise from diagrams with two insertions

of the Coulomb potential, the difference of the phase space matching contributions up to
N3LL order and the exact LL Coulomb-resummed result amounts to less than 2 fb for all
∆Mt between 15 and 35 GeV. We conclude that the C̃ int,2

V/A are numerically small and that

the N3LL phase space matching contributions are more than adequate for our theoretical
precision aim.

Contributions related to the other O(v2) relativistic corrections

As the third class of phase space matching contributions we now examine the corrections
that arise from insertions of O(v2) suppressed operators other than the interference cor-
rections just discussed above. Up to N3LL order the contributions of these matching cor-
rections to the inclusive NRQCD cross section have the form (i = {kin, dil, v2, P -wave},
j = {r, s, kin, dil, v2, P -wave}, k = {r, s, kin, dil, v2})

∆σO(v2)
psm = Im

[∑

i

(
C̃i,0

V (Λ) + C̃i,0
A (Λ)

)]

NLL

+ Im

[∑

j

(
C̃j,1

V (Λ) + C̃j,1
A (Λ)

)]

NNLL

+ Im

[∑

j

(
C̃j,2

V (Λ) + C̃j,2
A (Λ)

)
+

E

mt

∑

i

(
C̃

(1),i,0
V (Λ) + C̃

(1),i,0
A (Λ)

)

+ 4Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

)∑

k

i δc̃k,1
1 (Λ)Gc(a, v,mt, ν)

]

N3LL

, (88)

where we have again indicated the NLL, NNLL and N3LL order corrections. The results for

the C̃i,0
V/A, C̃j,1

V/A, C̃
(1),i,0
V/A and δc̃k,1

1 have been given in Eqs. (54), (71), (55) and (78), respec-

tively. As for the interference coefficients the results for the C̃j,2
V/A are currently unknown

and are neglected in the following analyses.

In Fig. 18 ∆σ
O(v2)
psm is displayed at NLL (green dashed lines), NNLL (brown dashed line)

and N3LL (black dashed lines). It is striking that the NLL contributions are at the sub-fb
level and an order of magnitude smaller than the NNLL terms. The small size of the NLL
terms is, however, due to an almost complete cancellation in the sum of the individual C̃i,0

V/A

coefficients (see Fig. 8). The size of the individual coefficients is at the level of 1 − 3 fb
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FIG. 18: Contributions to the inclusive cross section from the sum of the phase space matching

arising from insertions of O(v2) relativistic corrections other than the interference contributions

at NLL (green), NNLL (brown) and N3LL (black) order, as a function of the total center of mass

energy for ∆Mt = 15 (left) and ∆Mt = 35 GeV (right).

and comparable in size to the individual NNLL coefficients C̃j,1
V/A (see Fig. 14). The NNLL

coefficients, on the other hand, do not cancel to the same extent due to the additional

contribution from the potential V(s)
r , see Eq (71). Thus the situation concerning the αs-

expansion for the third class of the phase space matching contributions is similar to the
other classes of phase space matching contributions discussed above. This is also confirmed
by the size of the N3LL corrections which amount to at most 1 to 2 fb. Although we do not
have a numerical Coulomb-resummed expression for a more thorough comparison, the results
indicate that the αs-expansion is also well under control for the third class of phase space
matching contributions. Due to the overall small size of these contributions we conclude
again that keeping the phase space matching contributions up to N3LL order is more than
adequate to reach our theoretical precision goal.

V. NUMERICAL ANALYSIS

In Sec. IIIC we have demonstrated for the case αs = 0 that the phase space matching
contributions are essential in order to compensate for the fact that the previous NRQCD
predictions for top threshold production overestimate the full theory cross section by a sub-
stantial amount. The problem of the previous NRQCD predictions is related to the fact
that upon shifting the energy by E → E + iΓt, in order to account for the top quark fi-
nite lifetime, the NRQCD tt̄ phase space becomes unrestricted and extends to unphysical
regions as a consequence of the nonrelativistic expansion. The phase space matching proce-
dure removes these unphysical phase space contributions and implements the information on
possible experimental cuts into the NRQCD predictions. These phase space matching con-
tributions are represented by imaginary contributions to the Wilson coefficients of NRQCD,
see Sec. II.

In this section we analyze the complete set of N3LL phase space matching contributions
determined in the previous sections for predictions of the inclusive NRQCD top pair thresh-
old cross section with cuts on the invariant masses of the top and the antitop quark defined
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in Eq. (34). We also compare the size of the phase space matching contributions to the other
and previously known types of electroweak effects relevant for the top pair threshold cross
section: the NNLL QED corrections, the hard electroweak corrections [22] and the (type-1)
finite lifetime corrections, which are not related to phase space restrictions [27]. Together
with the phase space matching contributions, which we call type-2 finite lifetime corrections,
these three classes of contributions constitute all effects of the electroweak interactions on
the threshold cross section.11

To start we collect all phase space matching contributions to the inclusive NRQCD cross
section up to N3LL order. In the previous sections we have for simplicity neglected the hard
QCD and QED matching corrections contained in the Wilson coefficient c1(ν = 1) of the
leading (e+e−)(tt̄) top pair production operator. Accounting for these matching corrections
the complete set of N3LL phase space matching contributions can be derived from the
factorization formula in Eq. (26) and takes the form

∆σPSM(Λ, ν = 1) = ∆σNLL(Λ, 1) +

[
∆σNNLL(Λ, 1) + 2 h

(1)
1 ∆σNLL(Λ, 1)

]

NNLL

+

[
∆σN3LL(Λ, 1) + 2 h

(1)
1 ∆σNNLL(Λ, 1) +

(
2 h

(2)
1 + (h

(1)
1 )2

)
∆σNLL(Λ, 1)

]

N3LL

, (89)

where we have specifically indicated by brackets the NNLL and N3LL order contributions.

Explicit expressions for the NLL and NNLL hard QCD/QED matching conditions h
(1)
1 and

h
(2)
1 are given in Eq. (19). The terms ∆σNkLL(Λ, 1) are the NkLL phase space matching

contributions to the inclusive cross section with the h
(1,2)
1 set to zero. The result for ∆σNLL

reads (i = int, dil, kin, v2,P-wave)

∆σNLL(Λ, 1) = Im

[
C̃0

V (Λ) + C̃0
A(Λ) +

∑

i

(
C̃i,0

V (Λ) + C̃i,0
A (Λ)

)]
, (90)

where expressions for C̃0
V/A and the C̃i,0

V/A have been given in Eqs. (49) and (54), respectively.

The term ∆σNNLL has the form (j = r, s, int, dil, kin, v2, P -wave)

∆σNNLL(Λ, 1) = Im

[
C̃1

V (Λ) + C̃1
A(Λ) +

∑

j

(
C̃j,1

V (Λ) + C̃j,1
A (Λ)

)

− h
(1)
1

(
C̃v2,0

V (Λ) + C̃v2,0
A (Λ)

)]
, (91)

where expressions for C̃1
V/A and the C̃j,1

V/A have been given in Eqs. (70) and (71), respectively.

Finally, ∆σN3LL reads (i = {int, dil, kin, v2,P-wave}, j = {r, s, int, dil, kin, v2,P-wave}, k =

11 We do not discuss here the effects of the e+e− luminosity spectrum since it is determined for the most

part from experimental measurements and simulations.
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{r, s, dil, kin, v2})

∆σN3LL(Λ, 1) = (∆σIm[Gc]
psm )N3LL + Im

[
E

mt

∑

i

(
C̃

(1),i,0
V (Λ) + C̃

(1),i,0
A (Λ)

)]

+ Im

[∑

j

(
C̃j,2

V (Λ) + C̃j,2
A (Λ)

)]

+ Im

[
4Nc

(
(CBorn

V,1 )2 + (CBorn
A,1 )2

)∑

k

i δc̃k,1
1 (Λ)Gc(a, v,mt, ν)

]

+ Im

[
4Nc

(
CBorn

V,1 C int
V,1 + CBorn

A,1 C int
A,1

)
i δc̃int,1

1 (Λ)Gc(a, v,mt, ν)

]

+ Im

[(
(h

(1)
1 )2 − h

(2)
1

)(
C̃v2,0

V (Λ) + C̃v2,0
A (Λ)

)
− h

(1)
1

(
C̃v2,1

V (Λ) + C̃v2,1
A (Λ)

)]
,

(92)

where (∆σ
Im[Gc]
psm )N3LL is a numerical expression defined in Eq. (85), and the results for C̃

(1),k,0
V/A

and iδc̃k,1 have been given in Eqs. (55) and (78), respectively. The results for the C̃j,2
V/A are

currently unknown. For the analysis we carry out in the following we set them to zero.

Together with an analytic determination of (∆σ
Im[Gc]
psm )N3LL we plan to compute them in a

separate publication.
In the following analysis we use mt = 172 GeV for the top mass in the 1S mass scheme [28,

58], and all matching coefficients are evaluated at the scale mt (ν = 1). For the QCD
coupling we use αs(mt) = 0.1077 and for the QED (MS) coupling αqed(mt) = 1/125.9. All
soft matrix element contributions are evaluated for the QCD and QED couplings at the
velocity renormalization parameter ν = 0.2 which corresponds to µsoft = 34.4 GeV for the
soft and to µusoft = 6.88 GeV for the ultrasoft scales. For the evaluation of the hard one-
loop electroweak corrections we choose mHiggs = 130 GeV. All other parameters are given in
Eqs. (63).

In Fig. 19 we show the phase space matching corrections to the inclusive tt̄ threshold
cross section at NLL (black dotted lines), NNLL (black dashed lines) and N3LL order (black
solid lines), the NNLL QED corrections (blue lines), the NNLL hard one-loop electroweak
corrections (green lines) and the type-1 finite lifetime corrections (red lines) as a function of
the c.m. energy

√
s. The left panel shows the results for an invariant mass ∆Mt = 15 GeV

and the right panel for ∆Mt = 35 GeV. The QED effects arise from the electromagnetic
correction to the QCD Coulomb potential (see text after Eq. (7)) and the one-loop QED
matching correction to the Wilson coefficient c1 of the tt̄ current, see Eq. (17). The hard one-

loop electroweak corrections are encoded in the coefficients C1loop
V/A,1 also shown in Eq. (17).

The result for C1loop
V/A,1 has been obtained in Ref. [22]. The type-1 finite lifetime corrections

represent all finite lifetime corrections which are not related to phase space constraints.
They consist of the corrections generated by the imaginary interference matching coefficient
iC int

V/A,1, see Eq. (17), the time dilation corrections to the Green function shown in Eq. (30)
and the contributions from the renormalization group summation of phase space logarithms
contained in the coefficients C̃V/A of the (e+e−)(e+e−) forward scattering operators given in
Eq. (31). The matching and time dilation corrections are known at NNLL order and the
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FIG. 19: Sizes of the different contributions to the inclusive cross section arising from electroweak

interactions as a function of the total center of mass energy for ∆Mt = 15 GeV (left) and ∆Mt =

35 GeV (right): (green line) NNLL hard one-loop electroweak effects from Ref. [22], (red line)

NNLL finite lifetime corrections from Ref. [27], (blue line) NNLL QED effects, and phase space

matching corrections at NLL, NNLL and N3LL (dotted, dashed and solid black lines, respectively).

The blue dotted lines correspond to the expected experimental uncertainties at the LC.

summation of phase space logarithms at NLL order [27]. The QED, hard electroweak and
type-1 finite lifetime corrections do not depend on phase space restrictions and are therefore
identical in both panels. In Fig. 19 the blue dotted lines represent a rough (and likely
optimistic) estimation of the expected experimental uncertainties at a future linear collider
consisting of an energy-independent error of 5 fb and a 2% relative uncertainty with respect
to the full prediction, both being added quadratically.

We see that the QED (blue lines) and the type-1 finite lifetime corrections (red lines) are
sizeable (at the level of 40 fb) only in the peak region just below

√
s = 2mt. Above and

below the peak region the QED corrections are quite small and do not exceed 5 fb. Above
and below the peak the type-1 finite lifetime corrections amount to −15 to −10 fb. Due to
their different signs the QED corrections and the type-1 finite lifetime corrections cancel each
other to a large extent in the peak region. The hard electroweak corrections (green lines)
represent a multiplicative factor of -1.2% to the total cross section and are therefore very
small below the peak and at the level of 12-13 fb above the peak region.12 We see that the
phase space matching contributions represent the largest of the four classes of electroweak
effects. In contrast to the other classes of electroweak effects they do not decrease strongly
for energies below the peak region. For ∆Mt = 15 GeV the N3LL phase space matching
contributions amount between −85 and −65 fb and for ∆Mt = 35 GeV they are between
−45 and −35 fb. The overall size of the phase space matching corrections decreases for
larger values of the top invariant mass cut ∆Mt. We emphasize, however, that the results
obtained in this work are valid only for moderate values of ∆Mt in the region between 15 and
35 GeV. For invariant mass cuts below 15 GeV the phase space constraints are not related
anymore to hard effects and for invariant mass cuts substantially above 35 GeV matching
contributions that need to be computed from full theory diagrams have to be included. The

12 The small size of the hard electroweak corrections displayed in Fig. 19 is obtained for the QED coupling

defined at the scale of the top mass mt.
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FIG. 20: Total inclusive top pair production cross section from NRQCD: starting from the pure

QCD NNLL prediction (black dashed line), we add step-by-step the QED corrections (blue line),

the hard electroweak corrections (green line), the type-1 finite lifetime corrections (red line) and

the N3LL phase space corrections (black solid line) for ∆Mt = 15 GeV.

relatively flat behavior of the phase space matching contributions is related to the fact that
the dominant phase space matching contributions are energy-independent. The small linear
dependence on

√
s is related to the

√
s dependence of the virtual γ and Z propagators of

the basic e+e− → tt̄ process and the peak-like structure comes from an imaginary phase
space matching contribution to the (e+e−)(tt̄) top pair production operator which enters
the N3LL inclusive cross section in terms of a time-ordered product. This time-ordered
product leads to a non-analytic dependence on the energy, see Eqs. (26) and (92). In Fig. 19
we have also displayed the phase space matching contribution to the inclusive cross section
at NLL (black dotted lines), NNLL (black dashed lines) and N3LL order (black solid lines)
in order to show the convergence of the phase space matching procedure. The results show
that the expansion related to the phase space matching procedure is particularly good for
larger values of ∆Mt and still well under control for ∆Mt = 15 GeV. We note that the
rather small size of the NNLL corrections (difference of black dotted and dashed lines) for
∆Mt = 15 GeV arises from a cancellation between different independent NNLL corrections,
see Sec. IVC.

In Figs. 20 and 21 the size of the four different types of electroweak corrections is shown
for predictions of the total inclusive cross section. Starting from the pure QCD NNLL
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FIG. 21: Total inclusive top pair production cross section from NRQCD: starting from the pure

QCD NNLL prediction (black dashed line), we add step-by-step the QED corrections (blue line),

the hard electroweak corrections (green line), the type-1 finite lifetime corrections (red line) and

the N3LL phase space corrections (black solid line) for ∆Mt = 35 GeV.

cross section (black dashed lines), which accounts only for the electroweak effects from
the basic e+e− → γ, Z → tt̄ process and the LL finite lifetime effects through the energy
replacement rule E → E + iΓt), we add step-by-step the QED corrections (blue lines), the
hard electroweak corrections (green lines), the type-1 finite lifetime corrections (red lines)
and the N3LL phase space corrections (black solid lines). In Fig. 20 we have ∆Mt = 15 GeV
and in Fig. 21 we have ∆Mt = 35 GeV. Only the phase space matching corrections depend
on ∆Mt. We again see that the phase space matching contributions exceed by far the
other electroweak corrections. Since we have already discussed the size of the individual
types of electroweak corrections in our analysis of Fig. 19, we concentrate here only on the
behavior of the predictions for energies below the peak region where the cross section is
small. Here the phase space matching corrections are very large and amount to changes of
more than 50% percent for ∆Mt = 15. These large corrections are related to the unphysical
phase space contributions contained in the pure QCD prediction which are a consequence
of the nonrelativistic expansion and the energy replacement rule E → E + iΓt. We stress
that these unphysical effects cannot be cured by adding more of the higher order QCD
corrections because they originate from modifications to the nonrelativistic tt̄ phase space
products caused by the top width. Thus in order to obtain realistic predictions for the top
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threshold cross section it is essential to account for the phase space matching corrections.

VI. CONCLUSION

The effects of the finite top quark lifetime are an essential ingredient for predictions
of the top pair production rate close to threshold

√
s ≈ 2mt, where mt is the top quark

mass. Because the top width Γt has approximately the same size as the typical top quark
kinetic energies, finite lifetime effects already enter the leading-order predictions and cannot
be treated as corrections. An important consequence is that the top pair cross section is
only well-defined with a given set of prescriptions how the observed top decay final states
are accounted for in the cross section. This entails that the cross section also accounts for
non-tt̄ processes which lead to the same observed final state, and that the cross section
can depend on experimental cuts on kinematic variables such as the reconstructed invariant
masses. When matching to the NRQCD effective theory these finite lifetime effects can
be integrated out for observables that are inclusive on the top and antitop decays, and
lead to imaginary matching contributions to the Wilson coefficients of NRQCD operators.
These imaginary matching coefficients are much like the complex indices of refraction in the
Maxwell theory of light propagation in an absorptive medium. The cross section including
the finite lifetime effects can then be obtained from the absorptive part of the e+e− → e+e−

forward scattering amplitude using the optical theorem.
One can distinguish two types of imaginary NRQCD matching coefficients. The type-1

contributions [27] account for the (Cutkosky) cuts through the top decay final states in full
theory diagrams. They lead e.g. to the well known quark bilinear top width term and also
account for the interference effects mentioned above. Insertions of the associated opera-
tors also cause UV divergences in the nonrelativistic tt̄ phase space integrations since the
resulting unstable top propagator i/(p0 − p2/2mt + iΓt/2) lifts the stable particle disper-
sion relation p0 = p2/2mt and allows for arbitrarily large final state top invariant masses.
These UV divergences require the introduction of (e+e−)(e+e−) forward scattering opera-
tors, which acquire an imaginary anomalous dimension and sum large logarithms of the top
velocity in the tt̄ final state phase space. The type-2 imaginary matching contributions are
the matching conditions of the Wilson coefficients of these (e+e−)(e+e−) forward scattering
operators. They encode the information on the experimental cuts used for the cross sec-
tion measurement. Since the type-2 matching contributions are not related to hard virtual
fluctuations, but to real final state configurations with large top quark off-shellness, we call
them phase space matching contributions.

In this work we have determined and analyzed the type-2 phase space matching condi-
tions up to N3LL order in the nonrelativistic expansion for cuts on the reconstructed top and
antitop invariant masses Mt, Mt̄ of the form |Mt,t̄ −mt| ≤ ∆Mt, with ∆Mt between 15 and
35 GeV and neglecting the W boson width. We have demonstrated that the numerically
dominant effect of the phase space matching is to remove the unphysical NRQCD phase
space contributions that do not pass the cut. This is because the nonrelativistic unstable
top propagator i/(p0 − p2/2mt + iΓt/2) overestimates by far top and antitop fluctuations
with large off-shellness. The remaining numerical contributions to the phase space matching
conditions coming from calculations of relativistic full theory diagrams were found to be well
below 5 fb for the cross section, which is negligible for the experimental precision one can
expect at a future linear collider. From the field theoretic point of view, the procedure of car-
rying out the phase space matching agrees with the common matching and renormalization
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methods for stable particle theories. Thus at higher orders in the nonrelativistic expansion
it is required to account for the phase space matching contributions of subdiagrams to re-
move non-analytic matrix element terms from the matching equations and to achieve that
the matching coefficients are analytic in the external energy. In the phase space matching
procedure at N3LL order for top pair production at threshold one has to also include the
phase space matching for (e+e−)(tt̄) top production operators.

Since the phase space matching procedure we have carried out involves the computation
of NRQCD phase space integrations with a hard cutoff related to ∆Mt, our results contain
power-counting breaking contributions. This means that phase space matching contributions
coming from insertions of higher order operators can give contributions that are formally
lower order. We have shown that such power-counting breaking contributions do not spoil
the nonrelativistic expansion and that power-counting breaking can be ignored from the
practical point of view. As far as the αs expansion is concerned, we have found that the
N3LL (O(α2

s)) corrections to the phase space matching contributions need to be determined
to meet the experimental precision expected at a future linear collider. At this time these
N3LL corrections are not yet fully known analytically, and their determination shall be
addressed in subsequent work.

Our final numerical results have been given in Sec. V. Leaving aside the effects from
the e+e− luminosity spectrum, which are known to distort the cross section shape and
normalization in a quite substantial way, we find that the phase space matching contributions
to the cross section exceed by far the other types of electroweak corrections, which are known
from previous work. The phase space matching contributions are between −85 and −35 fb
for invariant mass cuts ∆Mt between 15 and 35 GeV and are essential for realistic theoretical
predictions. In the peak and the continuum region (

√
s >∼ 2mt) they amount to 6 to 10%.

They are particularly important in the region below the peak (
√
s <∼ 2mt) where the cross

section decreases and the unphysical off-shell contributions of the NRQCD tt̄ phase space
become dominant. Here the phase space matching contributions can amount to more than
50%, and they ensure that the cross section has the correct physical behavior.

Phase space matching is also important for predictions of the top pair threshold cross
section if no kinematic cuts are imposed, since the NRQCD phase space contributions in-
volving off-shell top and antitop quarks still lead to large unphysical contributions. Here the
phase space matching contributions from relativistic full theory diagrams are numerically
important and cannot be neglected (Sec. IIIC). In this work we have determined these full
theory contributions for αs = 0, i.e. at NLL order. We finally note that the phase space
matching procedure can also be carried out using exclusively full theory computations with
kinematic cuts to determine the imaginary type-2 matching coefficients. This approach does
not involve any power-counting breaking contributions and allows to determine the phase
space matching contributions more easily for ∆Mt > 35 GeV. At this time these full the-
ory computations are only known for αs = 0, which allows to carry out this phase space
matching approach at NLL order. To go beyond the NLL level the results for the O(αs)
and O(α2

s) corrections to the e+e− cross section are required for the final states that arise
in top pair production. Such results are not available at this time.
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Appendix A: QCD interference effects

In this appendix we compute the O(αs) ultrasoft corrections to the imaginary phase space
matching coefficients C̃V/A of the (e+e−)(e+e−) forward scattering operators ÕV/A for the
invariant mass prescription explained in Sec. IVA. The corresponding diagrams in Coulomb
gauge are shown in Fig. 12. For the interference diagram 12d we need to define the top and
antitop invariant masses in the presence of an additional ultrasoft gluon in the final state.
As a toy prescription that can be easily implemented analytically we assume that we can
resolve the gluon down to an infrared scale λ. For gluon energies larger than λ we define
the top and antitop 4-momentum as the sum of 4-momenta of their decay products, bW+

and b̄W−, respectively. The top and antitop invariant masses are then defined exactly as in
Eq. (33). The result for the ultrasoft phase space matching corrections obtained from this
prescription should also be generic for the typical size of corrections for other, more realistic
invariant mass prescriptions. We can write the O(αs) contributions to the imaginary phase
space matching coefficients C̃V/A from each of the diagrams in Fig. 12a–d as (i = a, b, c, d)

C̃us
V/A,(i) = iNc(C

Born
V/A,1)

2 cus
(i) . (A1)

The resulting contributions to the inclusive cross section read

∆σus
(i) = Nc

[
(CBorn

V,1 )2 + (CBorn
A,1 )2

]
cus
(i) . (A2)

The computation of the ultrasoft corrections for energies close to threshold is performed
using NRQCD Feynman rules for the top/antitop propagators and ultrasoft gluon couplings.
The gluon momentum k is neglected when appropriate according to the scaling k ∼ mtv

2.
In Coulomb gauge the time-like gluon propagator has the form i/k2 and the transverse
propagator is i(δij −kikj/k2)/(k2 + iǫ). We cut the diagrams as indicated by the red dashed
lines in Fig. 12 using the well-known Cutkosky rules for the transverse gluon propagator
and Eq. (39) for the top and antitop propagators. We note that our computation is quite
similar to the one presented some time ago in Ref. [56], where, however, no phase space cuts
were considered. The main conclusion in the work of Ref. [56] was that for the total cross
section (i.e. without phase space restrictions) the contributions from the ultrasoft diagrams
in Fig. 12 cancel. This serves as an important cross check of the computations we carry out
here.

The contribution from the time-like gluon exchange between the bb̄ pair (Fig. 12a plus
the conjugated diagram) reads:13

cus
(a) =

4

3
i CFm

4
t

∫
d4p

(2π)4

∫
d4k

(2π)4

(
3|A(k0,k)|2 − |B(k0,k)|2

)

k2

× 1

(t1 − imtΓt)(t2 − imtΓt)(t1 − 2mtk0 + imtΓt)(t2 + 2mtk0 + imtΓt)
+ c.c., (A3)

13 We disagree with the corresponding result given in Ref. [56] with respect to the sign of the term |B(k0,k)|2.
However, this does not alter the conclusion that the contribution cancels in the absence of phase space

restrictions.
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where the invariant mass variables t1, t2, are defined in Eq. (42). The same variables are
employed for the computation of the diagrams in Figs. 12b and c. In Eq. (A3) we have
already performed the integrations over the bW+ and b̄W− phase space variables, which
yields the functions

A(k0,k) = −gsΓt

|k| ln

(
k0 − |k| − iǫ

k0 + |k| − iǫ

)
,

B(k0,k) = 2
gsΓt

|k|
2x− 1

2x+ 1

[
1 +

k0

2|k| ln

(
k0 − |k| − iǫ

k0 + |k| − iǫ

)]
k

|k| , (A4)

where x = M2
W/m

2
t . It is straightforward to check that Eq. (A3) vanishes if no bounds are

imposed on the integration over the top energy: carrying out the p0 integration by residues
one obtains a purely imaginary number, which cancels out when adding the conjugate di-
agram. This confirms that the diagram vanishes if there are no cuts on the phase space
integration. For the invariant mass cuts of Eq. (46) we proceed by performing the integra-
tion over the 3-momentum and the energy of the virtual gluon. After the trivial integration
over the p angles we obtain a representation of the time-like gluon exchange diagram of the
form

cus
(i) =

m3
tΓ

2
t

2π3

∫

∆̃(Λ)

dt1dt2

√
mtE − (t1 + t2)/2

(t21 + (mtΓt)2) (t22 + (mtΓt)2)
∆(i)(t1, t2) . (A5)

We use this generic form for all the QCD interference diagrams, i = a, b, c, d. Note that
expression (A5) is compatible with Eq. (44), i.e. the ∆(t1, t2) functions in both expressions
have the same normalization. For the time-like gluon exchange from diagram 12a we obtain

∆(a)(t1, t2) = 2CFαs

(
1 − 1

9

(
2x− 1

2x+ 1

)2)
1

(t1 + t2)2 + 4(mtΓt)2

×
{(

2(mtΓt)
2 + t2(t1 + t2)

)
arctan

t1
mtΓt

+
mtΓt

4
(t1 − t2) ln

(
t22 + (mtΓt)

2

t21 + (mtΓt)2

)

+ {t1 ↔ t2}
}
. (A6)

The time-like gluon exchange between tb̄ and t̄b, Fig. 12b, is computed analogously:

cus
(b) = 16 i CFgsm

5
t

∫
d4p

(2π)4

∫
d4k

(2π)4

A(k0,k)

k2

1

(t1 − imtΓt)(t22 + (mtΓt)2)

× 1

(t1 − 2mtk0 + imtΓt)(t2 + 2mtk0 + imtΓt)
+

{
t1 ↔ t2
k0 → −k0

}
+ c.c. . (A7)

The terms shown explicitly in Eq. (A7) represent the contribution from the tb̄ gluon exchange
(first diagram in Fig. 12b). The contribution from the t̄b gluon exchange is obtained with
the replacements t1 ↔ t2, and k0 → −k0, as indicated in Eq. (A7). For this contribution
we find it more convenient to perform first the k0-integral. Again, it is easy to check that
if the p0-integration is done by residues, one obtains a result which is purely imaginary, so
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this contribution vanishes for the total cross section without phase space restrictions. The
expression can be cast into the form of Eq. (A5) with

∆(b)(t1, t2) = −
(

1 − 1

9

(
2x− 1

2x+ 1

)2)−1

∆(a)(t1, t2) . (A8)

Let us now turn to the space-like gluon exchange between the final state bb̄ pair in Fig. 12c.
The result reads

cus
(c) = −8

3
i CFm

4
t

∫
d4p

(2π)4

∫
d4k

(2π)4

|C(k0,k)|2
k2 + iǫ

1

(t1 − imtΓt)(t2 − imtΓt)

× 1

(t1 − 2mtk0 + imtΓt)(t2 + 2mtk0 + imtΓt)
+ c.c. , (A9)

where

C(k0,k) = −gsΓt

|k|
2x− 1

2x+ 1

[
k0

|k| +
(k0)

2 − k2

2k2
ln

(
k0 − |k| − iǫ

k0 + |k| − iǫ

)]
. (A10)

The expression can be cast into the form of Eq. (A5) with

∆(c)(t1, t2) = −CFαs

12π

(
2x− 1

2x+ 1

)2{(
ln

(
t21 + (mtΓt)

2

(2mt)4

)
− 4π

3
arctan

t1
mtΓt

+ {t1 ↔ t2}
)

+
(t1 − t2)(4mtΓt + 4π

3
(t1 + t2))

(t1 + t2)2 + 4(mtΓt)2

(
arctan

t1
mtΓt

− arctan
t2

mtΓt

)

+
(t1 − t2)(t1 + t2 − 4π

3
mtΓt)

(t1 + t2)2 + 4(mtΓt)2
ln

(
t22 + (mtΓt)

2

t21 + (mtΓt)2

)
− 2 ln

λ2

(2mt)2

}
. (A11)

The |k| integration in cus
(c) yields an infrared divergence, which we have regularized with the

cutoff λ mentioned at the beginning of this appendix. This IR divergence is cancelled by
a corresponding IR divergence in the real gluon emission diagram in Fig. 12d, as shown
below. Attaching a space-like ultrasoft gluon to the top or antitop lines such as in diagram
12e yields an additional v factor, so the corresponding contributions are suppressed in the
nonrelativistic expansion with respect to those in Figs. 12a-d. This way we only need to
consider real gluon emission from the bottom quark lines. Due to the additional gluon in
the final state the relation between the variables t1,2 and the nonrelativistic loop momenta
(p0,p2) has to be modified. For the momentum routing displayed in Fig. 12d, t1 and t2 are
defined as

t1 = 2mt

(E
2

+ p0 − p2

2mt

− k0
)
,

t2 = 2mt

(E
2
− p0 − p2

2mt

)
. (A12)
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The result from diagram 12d then reads

cus
(d) =

4

3
CFm

4
t

∫
d4p

(2π)4

∫
d3k

(2π)4

C(|k|,k)2

|k|
1

(t1 − imtΓt)(t2 + imtΓt)

× 1

(t1 + 2mt|k| + imtΓt)(t2 + 2mt|k| − imtΓt)
+ c.c. . (A13)

For this contribution the |k|-integration extends to values such that the phase space factor

|p| =
√
mtE −mt|k| − (t1 + t2)/2 remains a real number. As anticipated above, the |k|-

integration is IR-divergent and we introduce the cutoff λ as in the case of diagram 12c. The
expression can be cast into the form of Eq. (A5) with

∆(d)(t1, t2) =
CFαs

12π

(
2x− 1

2x+ 1

)2{
4 ln

(
2mtE − (t1 + t2)

m2
t

)
− 2 ln

λ2

(2mt)2

+

([
2 (t2 − imtΓt)

t1 − t2 + 2imtΓt

h(t2)

h̃(t1 + t2)
ln

(
h(t2) + h̃(t1 + t2)

h(t2) − h̃(t1 + t2)

)
+ {t1 ↔ t2}

]
+ c.c.

)}
,

(A14)

where

h(y) =
√
mtE − (y − imtΓt)/2 ,

h̃(y) =
√
mtE − y/2 . (A15)

We explicitly see the cancellation of the infrared divergent terms in the sum of cus
(c) and cus

(d).

Again it is easy to check that after integrating over the top energy p0 without restrictions,
both contributions cancel completely.

Expanding the ultrasoft phase space matching contributions mtE,mtΓt ≪ Λ2 up to terms
of order 1/Λ3, we obtain

cus
(a) =

√
2m2

t

3π2
CFαs

(
1 − 1

9

(
2x− 1

2x+ 1

)2)
mtΓ

2
t

Λ3

{
3 ln

mtΓt

Λ2
+ ln 2 − 1 −

√
2 − sinh−1(1)

}
,

cus
(b) = −

√
2m2

t

3π2
CFαs

mtΓ
2
t

Λ3

{
3 ln

mtΓt

Λ2
+ ln 2 − 1 −

√
2 − sinh−1(1)

}
,

cus
(c) =

√
2m2

t

3π3
CFαs

(
2x− 1

2x+ 1

)2
Γt

Λ

{
ln

Γt

λ

(
1 +

mtE

3Λ2

)
+

1

3π

mtΓt

Λ2

(√
2 + sinh−1(1)

)
ln
λmt

2Λ2

+
mtΓt

Λ2

(
π

3
ln
mtΓt

Λ2
− k1

9π

)}
,

cus
(d) = −

√
2m2

t

3π3
CFαs

(
2x− 1

2x+ 1

)2
Γt

Λ

{
ln

Γt

λ

(
1 +

mtE

3Λ2

)
+

1

3π

mtΓt

Λ2

(√
2 + sinh−1(1)

)
ln
λmt

2Λ2

+
mtΓt

Λ2

k2

9π

}
(A16)
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with

k1 = d1 + 5
√

2 − 6
√

2 ln 2 − 3 ln2 2

2
+ π(3 ln 2 − 1

2
) + π2(

√
2 +

5

12
− 2 ln 2)

+(5 − π2 − 9 ln 2) sinh−1(1) +
3

2

[
sinh−1(1)

]2 − 3Li2

(1 −
√

2

2

)
,

k2 = d2 +
π

2
(5 − 12 ln 2) +

3π2

4
. (A17)

The constants d1 and d2 have been evaluated numerically and read

d1 = −4.961 , d2 = −17.75 . (A18)

Adding up the results of all diagrams we are - as anticipated from the general arguments
discussed in Sec. IVA - left with a correction to the cross section of order mtΓt/Λ

2 with
respect to the NLL phase space correction:

∑

i=a,b,c,d

cus
(i) =

m2
t

4π

4
√

2

π

Γt

Λ
∆us , (A19)

where

∆us =
CFαs

27π2

(
2x− 1

2x+ 1

)2
mtΓt

Λ2

{
π2
(
1 +

√
2 − ln 2 + sinh−1(1)

)
− k1 − k2

}
. (A20)

Apart from the cancellation of the lnλ infrared divergences already pointed out above, we
also find that all logarithms of Γt cancel in the sum of all diagrams. This is expected be-
cause the phase space matching contributions represent hard effects. A proper evaluation of
the ultrasoft phase space matching corrections therefore also requires to employ the strong
coupling in Eq. (A20) at the hard scale. For mt = 172 GeV, MW = 80.425 GeV and
CFαs(mt) = 0.1436 we find that ∆us = 0.004mtΓt/Λ

2. We thus find that the ultrasoft
corrections based on our invariant mass prescription have an additional strong numerical
suppression factor. Although this result might not be generalized to other invariant mass
definitions, it nevertheless supports the conclusion that ultrasoft effects are in general irrel-
evant at the level of precision we aim for in this work.
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