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1. Introduction

Correlators of heavy quark currents in different kinematical regions are of interest for a number
of phenomenological applications. These two-point functions only depend on two scales, namely
the square of the external four-momentumq2 and the heavy quark massm. Many of the applications
focus on one of three distinct kinematical regions: The low energy region withq2 ≈ 0, the quark
pair production threshold atq2 = 4m2 and the (euclidean) high energy region−q2 → ∞.

Moments in the low energy expansion can be used for precise extractions of charm and bottom
quark masses via sum rules [1] (for reviews see [2]), whereasthreshold and high energy expansions
are directly related to production cross sections fortt̄, charmed hadrons or bottom hadrons in the
respective energy regions.

The aforementioned expansions for the correlators in the three regions are known relatively
well: In the low energy region atO(α2

s ) the leading eight coefficients were computed more than
ten years ago [3], and as of today as many as 30 moments are known [4]. At O(α3

s ), however, only
the first three physical moments of the vector correlator areavailable [5].

Threshold expansions for correlators are expansions in thesmall heavy quark velocityv =
√

1−4m2/q2 ≪ 1. Currently all of the necessary machinery for NNLO threshold expansion is
known (see for instance Ref. [6] and references therein). This means, that all terms of order
(αn

s /vn−1) · {1, v, v2} are in principle known. Explicit expansions for vector correlators can be
derived from Refs. [7].

For high energies the leading seven coefficients in the expansion are known atO(α2
s ) for the

vector current [8]. At orderα3
s the first two terms in the high energy expansion of the vector

correlator have been published in Refs. [9]. More information is available for the absorptive parts
of the correlators, which correspond to the logarithmic terms in the high energy expansions. Here
the first three coefficients are known for the vector correlator [10].

Still, it would be desirable to have results for the correlators which are valid for arbitrary ener-
gies in addition to these expansions. One obvious benefit would be the possibility to expand such
a result in a kinematical region of interest in order to obtain even more coefficients in the expan-
sion. It would also be possible to predict values of cross sections for intermediate regions between
threshold and high energies, where the mere expansions may not be very accurate anymore. Last
but not least, the full energy dependence is essential for those QCD sum rule approaches to quark
mass determination which use either the Borel transformation of the correlator [1] or so-called
contour-improved perturbation theory [11].

Unfortunately, analytical results which are valid for arbitrary energies only exist up toO(αs)

[12]. Still, it is possible to reconstruct the full energy dependence approximately from the known
expansions at higher orders. Using a seminumerical method based on Padé approximations [13],
the correlator of the vector current was reconstructed atO(α2

s ) [3]. Moreover, it was demonstrated
in [14] that in spite of the rather low amount of information available atO(α3

s ) it is still viable to
reconstruct the vector correlator and predict expansion coefficients with decent accuracy.

In this work we use the Padé approximation method to reconstruct the vector heavy quark cur-
rent correlators atO(α3

s ) and derive approximations to previously unknown expansioncoefficients
in the low energy, threshold and high energy regions.
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2. Calculation

2.1 Polarisation functions

It is convenient to explicitly extract the Lorentz structure of the heavy quark vector current
correlator and define the polarisation functionΠv(q2):

(−q2gµν +qµqν)Πv(q2) = i
∫

dxeiqx〈0|T jvµ(x) jvν (0)|0〉, jvµ = ψ̄γµψ . (2.1)

We do not take into account singlet contributions originating from diagrams with massless cuts and
choose the normalisationΠv(0) = 0. The perturbative expansions of the polarisation function reads

Πv = Π(0),v +CFΠ(1),vαs

π
+ Π(2),v

(αs

π

)2
+ Π(3),v

(αs

π

)3
+ . . . , (2.2)

whereCF = 4
3 is the quadratic Casimir operator for the adjoint representation. A natural variable

to describe the behaviour ofΠv is given byz= q2

4m2 wheremdenotes the heavy quark mass defined
in the on-shell scheme.

2.2 Padé approximation

The Padé approximantpn,m(x) to a function f is defined as

pn,m(x) =
∑n

i=0aixi

1+ ∑m
i=1 bixi . (2.3)

A naïve application of the Padé approximation method will, however, fail for the functions
Π(i),v(z) because contrary to the Padé approximants (Eq. (2.3)) they are not meromorphic ev-
erywhere in the complex plane. There are two major aspects ofthis problem, which have to be
considered: The functionsΠ(i),v(z) diverge logarithmically forz→ −∞. There are also logarith-
mic contributions at threshold. There is a branch cut along the real axis starting fromz= 1. This
behaviour can obviously not be reproduced accurately by a Padé approximation.

The first problem related to the appearance of logarithms canbe cured by splittingΠ(i),v(z)
into two parts,

Π(i),v(z) = Π(i),v
reg (z)+ Π(i),v

log (z) , (2.4)

so thatΠ(i),v
log (z) is a suitable function containing all known logarithmic contributions toΠ(i),v(z).

In this way the problem reduces to finding an approximation toΠ(i),v
reg (z).

The second problem related to the branch cut is treated in a different way: We map the complex
plane (including its cut) onto the unit circle in such a way that the branch cut is mapped onto the
perimeter. This can be achieved via the conformal transformation z→ 4ω

(1+ω)2 . The functions

Π(i),v
reg (ω) are now suitable for the Padé approximation procedure.

2.3 Subtractions

As explained in Section 2.2, the first step consists of absorbing the logarithmic contributions
in the high energy and threshold expansions into a functionΠ(3),v

log (z). This function must be chosen
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carefully in order not to introduce undesired additional singularities inΠ(3),v
reg (z). It is very con-

venient to use lower order analytical resultsΠ(0),v andΠ(1),v as auxiliary functions [14].Π(0),v is
given by

Π(0),v(z) =
3

16π2

(

20
9

+
4
3z

− 4(1−z)(1+2z)
3z

G(z)

)

, (2.5)

with

G(z) =
1
2z

log(u)/

√

1− 1
z

, u = (

√

1− 1
z
−1)/(

√

1− 1
z

+1) . (2.6)

The expansions of the vector correlator (withnl = 3) around threshold and forq2 → ∞ are given by

Π(3),v(z) =2.63641/(1−z)+ (−25.2331−7.75157log(1−z))/
√

1−z−11.0654log(1−z)

+1.42833log2(1−z)−0.421875log3(1−z)+K0+O(
√

1−z) (2.7)

and

Π(3),v(z) = −6.172−0.070log(−4z)+0.121log2(−4z)−0.037log3(−4z)+1/z(−4.333

−3.756log(−4z)+2.118log2(−4z)−0.319log3(−4z))+1/z2(D2−5.130log(−4z)+

0.318log2(−4z)+0.401log3(−4z)−0.079log4(−4z))+O(1/z3) , (2.8)

respectively. The construction ofΠ(3),v
log (z) is now based on the expansions ofΠ(1),v andG(z) in the

threshold and high-energy region:

G(z) =
π
2

1√
1−z

+O((1−z)0) , Π(1),v(z) = − 3
16

log(1−z)+const+O(
√

1−z) , (2.9)

G(z) =
− log(−4z)

2z
+O

(

1
z2

)

. (2.10)

Since these expansions have the desired behavior in the interesting regions we make the ansatz

Π(3),v
log (z) = ∑

i>0, j

ki j Π(1),v(z)iG(z) j +∑
m,n

dmn
(

zG(z)
)m

(

1− 1
z

)⌈m
2 ⌉ 1

zn , (2.11)

where⌈. . .⌉ means rounding up to the next integer number. The coefficients ki j anddmn are chosen

for Π(3),v
log (z) to reproduce the known behavior in the threshold and high-energy region given by

Eqs. (2.7) and (2.8).
The choice ofΠ(3),v

log (z) is of course not unique. A perfect reconstruction of the polarisation

function would clearly not depend on the specific choice, so variations ofΠ(3),v
log (z) can be used to

estimate the quality of the approximation procedure. Following Ref. [14], we introduce additional
parametersai andbi for this purpose. We modify the ansatz Eq. (2.11) forΠ(3),v

log (z) in the following
way: In the first sum, we multiply the summands withi = 3, j = 0 andi = j = 1 (which roughly
correspond to terms proportional to log3(1− z) and log(1− z)/

√
1−z) by factorsa1 + 1/z and

a2 + 1/z, respectively. In the second sum all summands corresponding to the two highest powers
of logarithms are multiplied by factors 1+1/(b1z) for m= 3 and 1+1/(b2z) for m= 4.
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Figure 1: Left: Imaginary part of the four loop contributions to the polarisation function above the charm
threshold. The plots showvR(3),v = v12π Im(Π(3),v) as functions ofv=

√

1−1/z. The solid black line is the
mean from all approximants, the area covered by three standard deviations is shown by bands. The dashed
lines show the expansions in the threshold and high energy regions. Right: Distribution of the values of
C(3),v

4 in on-shell scheme from different Padé approximants to the charm vector correlator.

Except for the conditionsai 6= −1 and bi 6= 0 the values of the parameters are in princi-
ple arbitrary. We vary them independently withai ∈ {−1± 1, −1± 4, −1± 16, −1± 64} , bi ∈
{±1, ±4, ±16, ±64} .

In the next step we determine the coefficients of the Padé approximants from the expansions
in the low energy, threshold, and euclidean high energy region. The low energy expansion for the
vector current andnl = 3 reads

Π(3),v(z) = 6.95649z+7.2478z2 +7.31855z3 +O(z4) . (2.12)

The expansions around threshold and for high energies are listed in Eqs. (2.7) and (2.8), respec-
tively.

Following Ref. [14], we additionally require that terms proportional toz−
3
2 andz−

5
2 are absent

in the high energy expansion.

2.4 Results

From the Padé approximants we reconstruct the polarisationfunction. Its imaginary part corre-
sponding to hadron production cross section is plotted above the charm threshold (i.e. withnl = 3)
in Fig. 1. The reconstructed functions can be expanded againto obtain additional low energy,
threshold and high energy coefficients. We find that the values of the coefficients are strongly
peaked around the mean value (for an example, see Fig. 1). As aconsequence we give our errors in
terms of standard deviations. As expected the error is a lot smaller for the low energy coefficients
in comparison to the coefficients in the threshold and high energy regions.

3. Conclusion

We have used the Padé approximation method to reconstruct the full energy dependence of the
heavy quark correlator of the vector current at orderα3

s . As input we have used information from
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C(3),v
4 C(3),v

5 C(3),v
6 C(3),v

7 C(3),v
8 K(3),v

0 D(3),v
2

nl = 3 383.073(11) 378.688(32) 373.536(61) 368.23(9) 363.03(13) 17(11) 2.0(42)
nl = 4 339.913(10) 338.233(32) 335.320(63) 331.90(10) 328.33(14) 17(29) 1.2(83)
nl = 5 298.576(9) 299.433(27) 298.622(54) 296.99(9) 294.94(12) 16(10) 1.4(21)

Table 1: Expansion coefficients from the reconstructed polarisation functions for different numbers of light
quarks in the on shell scheme.C(3),v

1−3 are known exactly. The errors always apply to the last digits, i.e.
2.0(42) means an error of 4.2.

expansions in the low energy, threshold and high energy regions. Expanding the reconstructed cor-
relators, we have obtained predictions for additional coefficients in these expansions. We find that
these predictions are fairly accurate for low energy coefficients but less precise for the coefficients
in the threshold and high energy expansions.
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