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1. Introduction

Correlators of heavy quark currents in different kinenadtiegions are of interest for a number
of phenomenological applications. These two-point fuordionly depend on two scales, namely
the square of the external four-momentgfrand the heavy quark mass Many of the applications
focus on one of three distinct kinematical regions: The lmergy region withg? ~ 0, the quark
pair production threshold @ = 4n¥ and the (euclidean) high energy regien? — oo.

Moments in the low energy expansion can be used for prectsagotions of charm and bottom
guark masses via sum rules [1] (for reviews see [2]), whetteashold and high energy expansions
are directly related to production cross sectionstfpcharmed hadrons or bottom hadrons in the
respective energy regions.

The aforementioned expansions for the correlators in treethegions are known relatively
well: In the low energy region a(a?) the leading eight coefficients were computed more than
ten years ago [3], and as of today as many as 30 moments are kapvwAt ¢'(a), however, only
the first three physical moments of the vector correlatoagedable [5].

Threshold expansions for correlators are expansions irsrtedl heavy quark velocity =
V1-4m?/g?2 < 1. Currently all of the necessary machinery for NNLO thrédhexpansion is
known (see for instance Ref. [6] and references therein)is Means, that all terms of order
(al/v=1) . {1, v, v?} are in principle known. Explicit expansions for vector ebators can be
derived from Refs. [7].

For high energies the leading seven coefficients in the esiparare known at’(a?) for the
vector current [8]. At order? the first two terms in the high energy expansion of the vector
correlator have been published in Refs. [9]. More infororais available for the absorptive parts
of the correlators, which correspond to the logarithmiai®in the high energy expansions. Here
the first three coefficients are known for the vector corcelgtO0].

Still, it would be desirable to have results for the cormiatwhich are valid for arbitrary ener-
gies in addition to these expansions. One obvious benefitddmithe possibility to expand such
a result in a kinematical region of interest in order to ab&ven more coefficients in the expan-
sion. It would also be possible to predict values of crostiaes for intermediate regions between
threshold and high energies, where the mere expansions otdoervery accurate anymore. Last
but not least, the full energy dependence is essential é&etlQCD sum rule approaches to quark
mass determination which use either the Borel transfoonadf the correlator [1] or so-called
contour-improved perturbation theory [11].

Unfortunately, analytical results which are valid for arbiy energies only exist up t0'(as)
[12]. Still, it is possible to reconstruct the full energypgadence approximately from the known
expansions at higher orders. Using a seminumerical methsedoon Padé approximations [13],
the correlator of the vector current was reconstructed(at?) [3]. Moreover, it was demonstrated
in [14] that in spite of the rather low amount of informatiovadable at¢ (a?) it is still viable to
reconstruct the vector correlator and predict expansi@fficeents with decent accuracy.

In this work we use the Padé approximation method to reaactstine vector heavy quark cur-
rent correlators a’(ag) and derive approximations to previously unknown expansamfficients
in the low energy, threshold and high energy regions.
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2. Calculation

2.1 Polarisation functions

It is convenient to explicitly extract the Lorentz struawf the heavy quark vector current
correlator and define the polarisation functiah(g?):

(—0PGpy + 0uay)MY(0P) = i/dxé'qx<0\TiZ(X)J’&(O)\0>, in=owy. (2.1)

We do not take into account singlet contributions origimgirom diagrams with massless cuts and
choose the normalisatiditV(0) = 0. The perturbative expansions of the polarisation funatéads

v_ O Wy | @ (95)\2, qEwv (%3
Y =nOvscen®@v=n (n) iy (n) Yo 2.2)

whereCg = %‘ is the quadratic Casimir operator for the adjoint represt@mi. A natural variable

to describe the behaviour BF is given byz= % wherem denotes the heavy quark mass defined
in the on-shell scheme.

2.2 Padé approximation

The Padé approximarm, m(X) to a functionf is defined as

n v
Pnm(X) = % (2.3)

A naive application of the Padé approximation method witiivaver, fail for the functions
N®Y(z) because contrary to the Padé approximants (Eq. (2.3)) tleepa meromorphic ev-
erywhere in the complex plane. There are two major aspedisi®oproblem, which have to be
considered: The functiondV¥(z) diverge logarithmically foz — —co. There are also logarith-
mic contributions at threshold. There is a branch cut aldwegréal axis starting from= 1. This
behaviour can obviously not be reproduced accurately bydé Bpproximation.

The first problem related to the appearance of logarithmsbeacured by splittindg11)(2)
into two parts,

NOV(z) =N%' (2 +n' @, (2.4)

o) thatl'll((i))g’v(z) is a suitable function containing all known logarithmic trisutions toMn®(z).

In this way the problem reduces to finding an approximatioﬁﬁté"(z).
The second problem related to the branch cut is treated ffeaatit way: We map the complex
plane (including its cut) onto the unit circle in such a wagttthe branch cut is mapped onto the

perimeter. This can be achieved via the conformal transition z — ﬁ. The functions

I'Ige)g’,v(w) are now suitable for the Padé approximation procedure.
2.3 Subtractions

As explained in Section 2.2, the first step consists of alisgrthe logarithmic contributions
in the high energy and threshold expansions into a funﬂiﬁ’g\"(z). This function must be chosen
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carefully in order not to introduce undesired additionaigsilarities inl'lﬁg’%"’(z). It is very con-
venient to use lower order analytical result®) andMY as auxiliary functions [14]M1© is

given by
3 (20 4 4(1-2(1+22
OV —_ 2 (22,7 22— 4d -7
n~Y(z) 16712(9 +32 3 G(2) |, (2.5)

G(z):zizlog( by / 1_3 u:(\/l—%—l)/(\/l—%%—l). (2.6)

The expansions of the vector correlator (with= 3) around threshold and fof —  are given by

with

NeWY(z) =2.63641/(1—2) + (—25.2331— 7.75157lod 1 — 2)) /v/1— z— 11.0654log 1 — 2)

+1.42833lod(1— z) — 0.421875log (1 —2) + Ko+ (V1 —2) (2.7)
and
NeY(z) = —6.172—0.070log — 4z) +0.121logf(—42) — 0.037log’(—42) + 1/2(—4.333
—3.756log —4z) + 2. 118Iogz —0.319l0g*(—42)) +1/7(D2 — 5.130log —42)+
0.318logf(—4z) +0.401 log?(— o 079lod (—42)) + 0(1/2), (2.8)

respectively. The construction Blﬁlog

threshold and high-energy region:

is now based on the expansions Bt andG(z) in the

m 1

G(z) = > \/—z

0((1-2)°), I'I(l)“’(z):—%Iog(l—z)+const+ﬁ(\/l—z), (2.9)

G(2) = #2_42)%-6(2—12). (2.10)

Since these expansions have the desired behavior in thegtitey regions we make the ansatz
7

i 1 1
kimDV(2'G(2) + S dmn(zG(z ”‘(1--) =, (2.11)
Iog |>% J () n;] mn( G( )) 7 2
where[... | means rounding up to the next integer number. The coeffgignanddny, are chosen
for I'Il(oé (2) to reproduce the known behavior in the threshold and highggnregion given by
Egs. (2.7) and (2.8).

The choice off I(Oé

function would clearly not depend on the specific choice, aations oﬂ'll(ogJ (z) can be used to
estimate the quality of the approximation procedure. kahg Ref. [14], we introduce additional
parameters; andb; for this purpose. We modify the ansatz Eq. (2. 11)I"Ilﬁ ) in the following
way: In the first sum, we multiply the summands wiith 3, j =0 andi = | = 1 (which roughly
correspond to terms proportional to f¢@ — z) and log1—z)/v/1—2) by factorsa; + 1/z and
ap + 1/z, respectively. In the second sum all summands correspgndithe two highest powers

of logarithms are multiplied by factors1/(b;z) for m= 3 and 14 1/(b,z) for m= 4.

(z) is of course not unique. A perfect reconstruction of the fieddion
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Figure 1: Left: Imaginary part of the four loop contributions to thelgmisation function above the charm
threshold. The plots showR®Y = v12rim(M©®)Y) as functions of = /1 — 1/z The solid black line is the
mean from all approximants, the area covered by three stdmgwiations is shown by bands. The dashed
lines show the expansions in the threshold and high enegjgne. Right: Distribution of the values of
Cf)"’ in on-shell scheme from different Padé approximants to ttaro vector correlator.

Except for the conditions; # —1 andb; # 0 the values of the parameters are in princi-
ple arbitrary. We vary them independently wihe {—1+1, —1+4,-14+16 —1+64},b; €
{41, +4, +16, +64} .

In the next step we determine the coefficients of the Padéappants from the expansions
in the low energy, threshold, and euclidean high energyreglhe low energy expansion for the
vector current and; = 3 reads

N®Y(z) = 6.9564%+ 7.24787 + 7.31855° + 0(2*). (2.12)

The expansions around threshold and for high energiessiesl lin Egs. (2.7) and (2.8), respec-
tively.

Following Ref. [14], we additionally require that terms postional toz 3 andz 3 are absent
in the high energy expansion.

2.4 Results

From the Padé approximants we reconstruct the polarisktiation. Its imaginary part corre-
sponding to hadron production cross section is plotted elioe charm threshold (i.e. with = 3)
in Fig. 1. The reconstructed functions can be expanded agabbtain additional low energy,
threshold and high energy coefficients. We find that the wahfethe coefficients are strongly
peaked around the mean value (for an example, see Fig. 1)céssaquence we give our errors in
terms of standard deviations. As expected the error is ariatler for the low energy coefficients
in comparison to the coefficients in the threshold and higlhrgynregions.

3. Conclusion

We have used the Padé approximation method to reconsteufiilttenergy dependence of the
heavy quark correlator of the vector current at ord@r As input we have used information from



From low-energy moments Bif(q?) to R(s) Peter Marquard

‘ H C‘(13)7v ‘ Cé3)7v ‘ Cé3),v ‘ C;3>"V ‘ Cg(;3)7v ‘ K(()3),v ‘ D(23),v ‘

n = 3[383073(11)[378688(32)[373536(61)| 36823(9) [36303(13)[17(11)[2.0(42)
n = 4(339.913(10)|338233(32) | 335320(63)| 331.90(10)| 32833(14)| 17(29)| 1.2(83)
n = 5| 298576(9) |299433(27)|29862254)| 29699(9) |29494(12)|16(10)|1.4(21)

Table 1: Expansion coefficients from the reconstructed polarisdtioctions for different numbers of light

qguarks in the on shell schemé:ﬁ)év are known exactly. The errors always apply to the last digi¢s
2.0(42) means an error of.2.

expansions in the low energy, threshold and high energpmsgiExpanding the reconstructed cor-
relators, we have obtained predictions for additional faciefits in these expansions. We find that
these predictions are fairly accurate for low energy caefiits but less precise for the coefficients
in the threshold and high energy expansions.
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