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Precise Charm- and Bottom-Quark Masses:
Recent Developments

J. H. Kühn
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Recent theoretical and experimental improvements in the determina-
tion of charm- and bottom-quark masses are discussed. The final results,
mc(3 GeV) = 986(13)MeV and mb(mb) = 4163(16)MeV represent the
presently most precise determinations of these two fundamental Standard
Model parameters.

The past years have witnessed significant improvement in the determina-
tion of charm- and bottom-quark masses as a consequence of improvements
in experimental techniques as well as theoretical calculations. Both masses
are critical ingredients in the evaluation of various observables, e.g. the
masses of charm and bottom mesons and the corresponding quarkonia, the
rates for weak decays of B mesons and the closely related CKM matrix
elements |Vcb|

2 and |Vub|
2. Rare kaon decays and the b → sγ transition

are critically affected by contributions from virtual charmed quarks. If the
Higgs boson is as light as expected from electroweak precision measure-
ments, its decay is dominated by bottom quarks with a rate proportional
m2
b . From the more theoretical side it is clear that mb is a decisive input

for any attempt of Yukawa unification, in the framework of SU(5), relating
τ and bottom Yukawa couplings, or SO(10), relating those of τ , bottom
and top quarks. Requiring comparable relative precision of top and bottom
masses, δmb/mb ∼ δmt/mt, an error δmb around or below 25 MeV is re-
quired to fully exploit the current precision of mt with δmt ≈ 1GeV, not to
speak of the potential precision of a future linear collider.

As stated above, quark mass determinations can be based on a variety
of observations and theoretical calculations. The one presently most precise
follows an idea advocated by the ITEP group more than thirty years ago
[1], and has gained renewed interest after significant advances in higher
order perturbative calculations discussed in this paper have been achieved.
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It exploits the fact that the vacuum polarization function Π(q2) and its
derivatives, evaluated at q2 = 0, can be considered short distance quantities
with an inverse scale characterized by the distance between the reference
point q2 = 0 and the location of the threshold q2 = (3GeV)2 and q2 =
(10GeV)2 for charm and bottom respectively. This idea has been taken up
in [2] after the first three-loop evaluation of the moments became available
[3, 4, 5] and has been further improved in [6] using four-loop results [7, 8]
for the lowest moment. An analysis which is based on the most recent
theoretical [9, 10, 11] and experimental progress has been performed in [12]
and will be reviewed in the following.

Let us recall some basic notation and definitions. The vacuum polariza-
tion ΠQ(q2) induced by a heavy quark Q with charge QQ (ignoring in this
short note the so-called singlet contributions), is an analytic function with
poles and a branch cut at and above q2 = M2

J/ψ. Its Taylor coefficients C̄n,

defined through

ΠQ(q2) ≡ Q2
Q

3

16π2

∑

n≥0

C̄nz
n (1)

can be evaluated in pQCD

C̄n = C̄(0)
n +

αs(µ)

π

(
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n lmQ

)

+

(

αs(µ)

π

)2
(
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n lmQ
+ C̄(22)

n l2mQ

)

+

(

αs(µ)

π

)3
(

C̄(30)
n + C̄(31)

n lmQ
+ C̄(32)
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+ C̄(33)

n l3mQ

)

+ . . . .

(2)

Here z ≡ q2/4m2
Q, where mQ = mQ(µ) is the running MS mass at scale µ.

Using a once-subtracted dispersion relation

ΠQ(q2) =
1

12π2

∫ ∞

0
ds

R(s)

s(s − q2)
(3)

(with RQ denoting the familiar R-ratio for the production of heavy quarks),
the Taylor coefficients can be expressed through moments of RQ. Equating
perturbatively calculated and experimentally measured moments,

Mexp
n =

∫

ds

sn+1
RQ(s) (4)

leads to an (n-dependent) determination of the quark mass

mQ =
1

2

(

9Q2
Q

4

Cn
Mexp

n

)

. (5)
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nl = 3 nl = 4 nl = 5

C̄
(3),v
1 −5.6404 −7.7624 −9.6923

C̄
(3),v
2 −3.4937 −2.6438 −1.8258

C̄
(3),v
3 −2.8395 −1.1745 0.4113

C̄
(3),v
4 −3.349(11) −1.386(10) 0.471(9)

C̄
(3),v
5 −3.737(32) −1.754(32) 0.104(27)

C̄
(3),v
6 −3.735(61) −1.910(63) −0.228(54)

C̄
(3),v
7 −3.39(10) −1.85(10) −0.46(9)

C̄
(3),v
8 −2.85(13) −1.67(14) −0.66(12)

C̄
(3),v
9 −2.22(17) −1.47(18) −0.91(16)

C̄
(3),v
10 −1.65(20) −1.37(22) −1.30(19)

Table 1. Expansion coefficients from the reconstructed vector polarization function

for different numbers of light quarks in the MS scheme. C
(3),v
1−3 are exact.

The consistency of the results for different n and their stabilization with
increasing orders in perturbation theory gives confidence in their reliability.

Significant progress has been made in the perturbative evaluation of the
moments since the first analysis of the ITEP group. The O(α2

s) contribution
(three loops) has been evaluated more than 13 years ago [3, 4, 5], as far as
the terms up to n = 8 are concerned, recently even up to n = 30 [13, 14].
About ten years later the lowest two moments (n = 0, 1) of the vector
correlator were evaluated in O(α3

s), i. e. in four-loop approximation [7, 8].
The corresponding two lowest moments for the pseudoscalar correlator were
obtained in [15] in order to derive the charmed quark mass from lattice
simulations [16]. In [9, 10] the second and third moments were evaluated
for vector, axial and pseudoscalar correlators. Combining, finally, these
results with information about the threshold and high-energy behaviour
in the form of a Padé approximation, the full q2/dependence of all four
correlators was reconstructed and the next moments, from four up to ten,
were obtained with adequate accuracy. A list of the relevant coefficients is
shown in Table 1 (for an earlier, less precise analysis, see Ref. [17]).

Most of the experimental input had already been compiled and exploited
in [6], where it is described in more detail. However, until recently the only
measurement of the cross section above but still close B-meson threshold
was performed by the CLEO collaboration more than twenty years ago [18].
Its large systematic uncertainty was responsible for a sizable fraction of the
final error on mb. This measurement has been recently superseded by a
measurement of BABAR [19] with a systematic error between 2 and 3%.
In [12] the radiative corrections were unfolded and used to obtain a sig-
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❍   CLEO (1985)/1.28
▼  BABAR (2009)
❒   BABAR (2009) (INCL. ISR)

√s (GeV)

R
b(

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10.6 10.7 10.8 10.9 11 11.1 11.2 11.3

Fig. 1. Comparison of rescaled CLEO data for Rb with BABAR data before and

after deconvolution. The black bar on the right corresponds to the theory predic-

tion [20].

n mc(3 GeV) exp αs µ np total
1 986 9 9 2 1 13
2 976 6 14 5 0 16
3 978 5 15 7 2 17
4 1004 3 9 31 7 33

Table 2. Results for mc(3 GeV) in MeV obtained from Eq. (5). The errors are

from experiment, αs, variation of µ and the gluon condensate.

nificantly improved determination of the moments. The final results for
mc(3GeV) and mb(10GeV) are listed in Tables 2 and 3. Despite the signif-
icant differences in the composition of the errors, the results for different
values of n are perfectly consistent. For charm the result from n = 1 has
the smallest dependence on the strong coupling and the smallest total error,
which we take as our final value

mc(3 GeV) = 986(13) MeV , (6)

and consider its consistency with n = 2, 3 and 4 as additional confirmation.
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n mb(10 GeV) exp αs µ total mb(mb)
1 3597 14 7 2 16 4151
2 3610 10 12 3 16 4163
3 3619 8 14 6 18 4172
4 3631 6 15 20 26 4183

Table 3. Results for mb(10 GeV) and mb(mb) in MeV obtained from Eq. (5). The

errors are from experiment, αs and the variation of µ.

Transforming this to the scale-invariant mass mc(mc) [21], including
the four-loop coefficients of the renormalization group functions one finds
[12] mc(mc) = 1279(13) MeV. Let us recall at this point that a recent
study [16], combining a lattice simulation for the data for the pseudoscalar
correlator with the perturbative three- and four-loop result [5, 15, 10] has
led to mc(3 GeV) = 986(10) MeV in remarkable agreement with [6, 12].

The treatment of the bottom quark case proceeds along similar lines.
However, in order to suppress the theoretically evaluated input above 11.2
GeV (which corresponds to roughly 60% for the lowest, 40% for the second
and 26% for the third moment), the result from the second moment has
been adopted as our final result,

mb(10 GeV) = 3610(16) MeV, (7)

corresponding to mb(mb) = 4163(16)MeV. The explicit αs dependence of
mc and mb can be found in [12]. When considering the ratio of charm and
bottom quark masses, part of the αs and of the µ dependence cancels

mc(3 GeV)

mb(10 GeV)
= 0.2732 −

αs − 0.1189

0.002
· 0.0014 ± 0.0028 , (8)

which might be a useful input in ongoing analyses of bottom decays.
The results presented in [12] constitute the most precise values for the

charm- and bottom-quark masses available to date. Nevertheless it is tempt-
ing to point to the dominant errors and thus identify potential improve-
ments. In the case of the charmed quark the error is dominated by the
parametric uncertainty in the strong coupling αs(MZ) = 0.1185 ± 0.002.
Experimental and theoretical errors are comparable, the former being dom-
inated by the electronic width of the narrow resonances. In principle this er-
ror could be further reduced by the high luminosity measurements at BESS
III. A further reduction of the (already tiny) theory error, e. g. through a
five-loop calculation looks difficult. Further confidence in our result can be
obtained from the comparison with the forementioned lattice evaluation.

Improvements in the bottom quark mass determination could originate
from the experimental input, e. g. through an improved determination of
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the electronic widths of the narrow Υ resonances or through a second, in-
dependent measurement of the R ratio in the region from the Υ(4S) up
to 11.2 GeV. As shown in Fig. 1, there is a slight mismatch between the
theory prediction above 11.2 GeV and the data in the region below with
their systematic error of less than 3%.

To summarize: Charm and bottom quark mass determinations have
made significant progress during the past years. A further reduction of
the theoretical and experimental error seems difficult at present. However,
independent experimental results on the R ratio would help to further con-
solidate the present situation. The confirmation by a recent lattice analysis
with similarly small uncertainty gives additional confidence in the result for
mc.
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