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I give an introduction to the theory of meson-antimeson mixing, aiming at students who
plan to work at a flavour physics experiment or intend to do associated theoretical studies.
I derive the formulae for the time evolution of a neutral meson system and show how the
mass and width differences among the neutral meson eigenstates and the CP phase in
mixing are calculated in the Standard Model. Special emphasis is laid on CP violation,
which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the
constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK , ∆MBd

, ∆MBd
/∆MBs

and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact
of a future measurement of CP violation in flavour-specific Bd decays is also shown.

1 First lecture: A big-brush picture

1.1 Mesons, quarks and box diagrams

The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles.
These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs
have opposite flavour quantum numbers:

K ∼ sd, D ∼ cu, Bd ∼ bd, Bs ∼ bs,

K ∼ sd, D ∼ cu, Bd ∼ bd, Bs ∼ bs, (1)

Here for example “Bs ∼ bs” means that the Bs meson has the same flavour quantum numbers as
the quark pair (b, s), i.e. the beauty and strangeness quantum numbers are B = 1 and S = −1,
respectively. The meson states in Eq. (1) are also eigenstates of the strong and electromagnetic
interactions. As long as we neglect the weak interaction, they are also mass eigenstates, with
the same mass for meson and antimeson. In the Standard Model (SM) all interaction vertices
conserve flavour, except for the couplings of W bosons to fermions.1 The piece of the SM
Lagrangian which describes the W couplings to quarks reads

LW =
gw√

2

∑

j,k=1,2,3

[
Vjk ujL γ

µdkLW
+
µ + V ∗

jk dkL γ
µujLW

−
µ

]
. (2)

1Strictly speaking, this statement assumes that the so-called unitary gauge for the weak gauge bosons is
adopted. The unphysical charged pseudo-Goldstone bosons, which appear in other gauges, also have flavour-
changing vertices. Changing the gauge shuffles terms between the pseudo-Goldstone bosons and the longitudinal
components of the gauge bosons.
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Figure 1: Box diagrams for K−K , D−D , Bd−Bd and Bs−Bs mixing. The zigzag lines
represent W bosons. For each process there is also a second box diagram, obtained by a 90◦

rotation.

Here gw is the weak coupling constant and V is the 3× 3 unitary Cabibbo-Kobayashi-Maskawa
(CKM) matrix :

V =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (3)

In Eq. (2) I have further used the notations (d1, d2, d3) = (d, s, b) and (u1, u2, u3) = (u, c, t). At
fourth order in the weak coupling we can change the flavour quantum numbers by two units and
obtain transitions between mesons and antimesons. The corresponding Feynman diagrams are
shown in Fig. 1. These |∆F | = 2 diagrams, where F denotes the appropriate flavour quantum
number F = S, C or B, represent the lowest non-vanishing contribution to the transition matrix
element Σ12 defined by

−i(2π)4δ(4)(pM − pM )Σ12 =
〈M(~pM )|S|M(~pM )〉

2MM
(4)

with the S-matrix S and the generic notation M = K,D,Bd or Bs. (The notation Σ12 refers to
the quantum-mechanical two-state system with |1〉 = |M〉 and |2〉 = |M〉.) I comply with the
standard relativistic normalisation of the meson states, 〈M(~p ′)|M(~p)〉 = 2E (2π)3δ(3)(~p ′ − ~p).

The meson mass MM =
√
E2 − ~p 2 in the denominator in Eq. (4) is introduced for later
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convenience. In terms of the Hamiltonian (density) HSM
int (x) = −LSMint (x), which encodes all

interactions of the SM, the S-matrix is given by the usual time-ordered exponential

S = Te−i
R

d4xHSM
int (x) (5)

In order to link Eqs. (4) and (5) to the diagrams of Fig. 1 we must consider the contribution from
LW in Eq. (2) to −HSM

int and expand the time-ordered exponential in Eq. (5) to order g4
w. The

determination of this term amounts to the calculation of the two contributing box diagrams with
the usual Feynman rules of the weak interaction. To this point we have only used standard text-
book quantum field theory, noting an important omission: No effect of the strong interaction
has been taken into account by now. Most importantly, we do not know yet how to take care of
quark confinement, which forces the external quarks in the diagrams of Fig. 1 to form mesons.
As an important feature, Quantum Chromodynamics (QCD) behaves very differently at short
and long distances: At short distances (probed by large energies) the QCD coupling constant
gs is small and we can apply perturbation theory [1], just as we did with the weak interaction.
That is, effects of short-distance QCD can be included by adding gluons to the diagrams in
Fig. 1. At large distances, corresponding to low energies, QCD is non-perturbative and one
must resort to different methods, such as lattice gauge theory or QCD sum rules. Long-distance
QCD is also referred to as hadronic physics, because its degrees of freedom are hadrons rather
than quarks and gluons. In many cases the associated theoretical uncertainties are the main
obstacle in the relation between measured quantities and the fundamental parameters of nature
encoded in the Lagrangian L. Theorists pursue a two-fold strategy to deal with hadronic
uncertainties: On one hand they try to refine non-perturbative methods such as lattice gauge
theory. On the other hand they try to identify quantities in which hadronic uncertainties
are small or even absent or look for ways to eliminate hadronic uncertainies through clever
combinations of different observables. We will enounter both strategies in our discussion of
meson-antimeson mixing. Weak processes of hadrons involve several largely-separated energy
scales.2 For example, in B−B mixing we encounter mt > MW ≫ mb ≫ ΛQCD, where
ΛQCD ∼ 0.4 GeV is the fundamental scale of the strong interaction governing e.g. the size
of binding energies. In order to correctly calculate Σ12 we must separate the different scales
from each other and apply different computational methods to large and small energy scales.
However, without detailed understanding of the strong interaction we can roughly assess the
relative importance of the contributions from the different internal quark flavours in Fig. 1: In
the case of Bd−Bd mixing and Bs−Bs mixing one finds that the box diagram with internal
top quarks vastly dominates over the diagrams with light quarks, because the result of the
diagram grows with the internal quark mass. For K−K mixing and D−D mixing no such
estimate is possible, because the contribution with the heaviest quark is suppressed by small
CKM elements.

Owing to Σ12 6= 0, M and M mix and are no more mass eigenstates. The latter are obtained
by diagonalising the 2 × 2 matrix Σij , where

−i(2π)4δ(4)(p′i − pj)Σij =
〈i, ~pi′|SSM|j, ~pj〉

2MM
(6)

with |1, ~p1〉 = |M(~p1)〉 and |2, ~p2〉 = |M(~p2)〉 generalises Eq. (4). We list two important aspects
of meson-antimeson mixing:

2I use natural (or Planck) units with ~ = c = 1, so that masses and momenta have units of GeV.
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i) The two mass eigenstates are linear combinations of M and M . The degeneracy is lifted
and we can denote the two mass eigenstates by MH and ML, where “H” and “L” stand
for “heavy” and “light”, respectively. MH and ML not only differ in their masses, but
also in their lifetimes.

ii) If we produce a meson M at some time t = 0, the corresponding state will evolve into a
superposition of M and M at later times t > 0. One observes meson-antimeson oscilla-
tions.

We will calculate the differences among the masses and decay widths in the second and third
lectures. Studies of neutral Kaons mainly exploit property i), while the mixings of the other
three neutral meson systems are investigated through property ii). The reason for the Kaon’s
special role here is the vast lifetime difference between KH and KL. The former state, usually
denoted as Klong, lives roughly 500 times longer than KL = Kshort, so that one can easily
produce a Klong beam. For D, Bd and Bs mesons the width differences are much smaller
than the average decay width of the two eigenstates and this method is not feasible. The
identification of the meson (discriminating between M and M) needed to track the meson-
antimeson oscillations is called flavour tagging. To observe the oscillations the mesons must
move sufficiently fast in the detector. Modern B factories, which produce (Bd, Bd) pairs via the
Υ(4S) resonance, have therefore asymmetric beam energies, so that the center-of-mass frame
(coinciding with the rest frame of the Υ(4S)) moves with respect to the laboratory frame.
At hadron colliders studies of meson-antimeson oscillations profit from the large boost of the
produced mesons. Tevatron and LHC are especially powerful for Bs physics, because the Bs−Bs
oscillations are very rapid.

1.2 A bit of history

Meson-antimeson mixings belong to the class of flavour-changing neutral current (FCNC) pro-
cesses, which involve different flavours with the same electric charge. Since in the SM such
processes are forbidden at tree-level, they are sensitive to new heavy particles appearing as
virtual particles in loop diagrams. Historically, the first new particle predicted from the consid-
eration of FCNCs was the charm quark, which was needed to eliminate large tree-level FCNC
couplings in conflict with experiment [2]. Subsequently, the rough size of the charm quark mass
mc was predicted from the size of the mass difference ∆MK = MH −ML in the neutral Kaon
system [3]. A great success story of flavour physics has been the exploration of the discrete
symmetries charge conjugation (C), parity (P ) and time reversal (T ). Charged Kaon decays
had revealed in 1956 that P and C are not conserved by the weak interaction, while physicists
kept their faith in a good CP symmetry. If CP were conserved, we could assign CP quantum
numbers to Klong and Kshort. The latter meson was observed to decay into a two-pion state,
and each pion is CP -odd and contributes a factor of −1 to the total CP quantum number (which
is multiplicative). A further contribution to the CP quantum number of a two-particle state
stems from the angular momentum: States with orbital angular momentum quantum number
l involve the spherical harmonic Y lm(~p), where ~p is the relative momentum of the two particles
considered. Since Y lm(~p) = (−1)lY lm(−~p), states with odd l have P and CP quantum numbers
−1, while those with even l are even under P and CP . Since the decaying Kaon has no spin and
the total angular momentum is conserved in any decay process, the two pions in the final state
have have l = 0 in the Kaon rest frame. (In general the spin wave function also matters, but
pions have spin zero.) In total we find that the two-pion state is CP -even. Now Klong was only
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seen to decay into three pions, so that this meson was believed to be CP -odd. In fact, its long
lifetime stems from the kinematical suppression of the decay into the CP -odd three–pion state.
To understand that a three-pion state is always CP -odd, first note that we get a contribution
of (−1)3 = −1 from the intrinsic CP quantum numbers of the three pions. Next pick any two
of the pions and call there relative orbital angular momentum quantum number l1. Likewise
we denote the quantum number for the relative orbital angular momentum between this pair
and the third pion by l2. One of the selection rules for the addition of angular momenta implies
that the total quantum number l satisfies l ≥ |l1 − l2|. Since l = 0, this means that l1 = l2 and
the “orbital” contribution to the CP quantum number is (−1)l1+l2 = (−1)2l1 = 1. Thus the
three-pion state is CP -odd, irrespective of the value of l1.

In 1964 the decay Klong → ππ was observed, establishing CP violation [4]. The two-
generation Standard Model, whose construction was completed later in that decade [5], could
not accomodate this phenomenon: We will see below that CP -violating interactions of quarks
necessarily involve complex couplings. While the Vjk’s in Eq. (2) are a priori complex, one can
render them real in the two-generation SM by transforming the quark fields as

dj → eiφ
d
j dj , uk → eiφ

u
kuk. (7)

with appropriate phases φdj and φuk . The net effects of these rephasings are the replacements of
the Vjk’s by

Vjke
i(φd

j−φ
u
k). (8)

These expressions involves three independent phases and we may choose e.g. φd1 − φu1 , φd1 −
φu2 and φd2 − φu1 in such a way that the three complex phases of a unitarity 2 × 2 matrix
are eliminated, arriving at the real Cabibbo matrix. In 1973 Kobayashi and Maskawa have
pointed out that a physical CP -violating phase persists in the quark mixing matrix, if there
are at least three generations [6]: A unitary 3 × 3 matrix has 6 complex phases while we have
only 5 phase differences φdj − φuk at our disposal. The finding of Kobayashi and Maskawa
was largely ignored at that time and only appreciated after the third fermion generation was
experimentally established. In 1987 the ARGUS experiment at DESY observed Bd−Bd mixing,
at an unexpectedly large rate [7]. This finding was the first hint at a truly heavy top quark,
which enters the lower left box diagram of Fig. 1.

1.3 CP violation

The last stroke of the brush is devoted to CP violation. Defining

CP |M(~pM )〉 = −|M(−~pM )〉, CP |M(~pM )〉 = −|M(−~pM)〉 (9)

we first look at decays M → fCP andM → fCP, where fCP is a CP eigenstate:

CP |fCP〉 = ηCP|fCP〉 (10)

with ηCP = ±1. The CP operator appearing in Eqs. (9) and (10) is unitary, i.e. (CP )−1 = (CP )†.
To get an idea of the importance of meson-antimeson mixing for the study of CP violation we
first assume that M andM do not mix. We could still measure the decay rates of the CP -
conjugate processes M → fCP andM → fCP. If we find them different we establish direct CP
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violation (often called CP violation in decay). However, it is very difficult to relate a direct CP
asymmetry to a fundamental CP phase in L: A non-zero direct CP asymmetry also requires
final state interaction related to the rescattering process M → f ′

CP → fCP. Rescattering leads
to CP -conserving complex phases in the decay amplitude. In the absence of such phases the
amplitudes of M → fCP andM → fCP would simply be related by complex conjugation since
all phases would switch sign under CP . But then the two decay amplitudes would have the
same magnitude leading to identical decay rates. For M = D,Bd, Bs this hadronic rescattering
process is mainly inelastic and intractable with present theoretical methods.

But thanks to meson-antimeson mixing we can study meson states which are superpositions
of |M〉 and |M〉. The mass eigenstates |MH〉 and |ML〉 are linear combinations of |M〉 and |M〉:

|ML〉 = p|M〉 + q|M〉 ,
|MH〉 = p|M〉 − q|M〉 , (11)

with |p|2 + |q|2 = 1. We can calculate p and q from the box diagrams in Fig. 1 and will do so
in the following sections. A commonly used shorthand notation for decay amplitudes is

Af = A(M → f) = 〈f |S|M〉, Af = A(M → f) = 〈f |S|M〉. (12)

A key quantity to study CP violation is the combination

λf =
q

p

Af
Af

. (13)

λf encodes the essential feature of the interference of the M → f and M → f decays, the
relative phase between q/p (from meson-antimeson mixing) and Af/Af (stemming from the
studied decay). In a first application, I discuss the decays of neutral Kaons into two charged or
neutral pions. A neutralK orK meson state is a superposition ofKH = Klong andKL = Kshort.
At short times the decays of the Kshort component of our Kaon beam will vastly dominate over
the Klong decays and one can access the decay rates Γ(Kshort → ππ) for ππ = π+π−, π0π0. At
large times, say, after 10 times the Kshort lifetime, our beam is practically a pure Klong beam
and we can study the CP -violating Γ(Klong → ππ) decays. It is advantageous to switch to the
eigenbasis of strong isospin I:

|π0π0〉 =

√
1

3
| (ππ)I=0〉 −

√
2

3
| (ππ)I=2〉 ,

|π+π−〉 =

√
2

3
| (ππ)I=0〉 +

√
1

3
| (ππ)I=2〉 ,

The strong interaction respects strong-isospin symmetry to an accuracy of typically 2%, so that
we can neglect any rescattering between the I = 0 and I = 2 states. Consequently, no direct
CP violation contributes to the famous CP -violating quantity

ǫK ≡ 〈(ππ)I=0|Klong〉
〈(ππ)I=0|Kshort〉

. (14)

Abbreviating A0 ≡ A(ππ)I=0
, A0 ≡ A(ππ)I=0

and (see Eq. (13)) λ0 ≡ λ(ππ)I=0
we insert Eq. (11)

into Eq. (14) and readily find

ǫK =
1 − λ0

1 + λ0
. (15)
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The experimental value [8]

ǫexp
K = ei φǫ (2.23 ± 0.01)× 10−3 with φǫ = (0.967± 0.001)

π

4
. (16)

therefore allows us to determine λ0, which in our example is apparently close to 1. In our case
with |A0| = |A0| (absence of direct CP violation) we have |λ0| = |q/p|. With Eq. (15) we find

ǫK ≃ 1

2
[1 − λ0] ≃ 1

2

(
1 −

∣∣∣∣
q

p

∣∣∣∣− i Imλ0

)
(17)

up to corrections of order ǫ2K . Remarkably, from the real and imaginary part of ǫK we infer
two CP -violating quantities:

i) the deviation of |q/p| from 1 and

ii) the deviation of Imλ0 from 0.

The first quantity is independent of the studied final state f and codifies CP violation in mixing.
The second quantity, Imλf , measures CP violation in the interference of mixing and decay or,
in short, mixing-induced CP violation in the decay M → f .

In the case of D,Bd or Bs mixing studies one tags the flavour at some time t = 0. The
corresponding meson states are called |M(t)〉 and |M(t)〉 and satisfy |M(t = 0)〉 = |M〉 and
|M(t = 0)〉 = |M〉. For t > 0 these time-dependent states are calculable superpositions of |M〉
and |M〉 and by observing the time-dependence of M(t) → f we can infer λf . The presently
most prominent application of this method is the precise determination of Imλf in the decay
Bd → J/ψKshort by the B factories BaBar and BELLE. Needless to say that we will discuss
this important topic in detail below.

While C, P , and T are violated in nature, the combination CPT is a good symmetry. This
CPT theorem holds in any local Poincaré-invariant quantum field theory [9]. It implies that
particles and antiparticles have the same masses and total decay widths. When applied to our
mixing problem characterised by Σ in Eq. (6) the CPT theorem enforces Σ11 = Σ22. However,
while the CPT theorem implies Γtot(M) = Γtot(M), one still has different time-integrated total
decay rates for tagged mesons,

∫∞

0
dtΓtot(M(t)) 6=

∫∞

0
dtΓtot(M(t)). This quantity is sensitive

to the “arrow of time” and the difference Γtot(M(t))−Γtot(M(t)) measures CP violation rather
than CPT violation. Throughout my lectures I assume CPT invariance and therefore identify
CP symmetry with T symmetry. Still, experiments have tested the CPT theorem by probing
Σ11 = Σ22 in K−K mixing. We may speculate that Poincaré invariance and CPT symmetry
are violated by the unknown dynamics of quantum gravity. If we are lucky the size of CPT
violation scales linearly in the inverse Planck Mass MPlanck. Interestingly, today’s accuracy of
the CPT test Σ11 = Σ22 is roughly MK/MPlanck.

2 Second lecture: Time evolution

2.1 Time-dependent meson states

In the Schrödinger picture, the time evolution of a quantum-mechanical state |ψ〉 = |ψ, t = 0〉 is
given by |ψ, t〉 = U(t, 0)|ψ〉, with the unitary time-evolution operator U(t, 0). Consider first the
case of a weakly-decaying charged meson (i.e. K+, D+ or B+), which cannot mix with other
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Figure 2: Left: generic self energy Σ of a charged meson. Right: M0−M0 mixing amplitude
Σ12.

states. The corresponding state at t = 0, |M+〉, will evolve into a superposition of all states
allowed by energy-momentum conservation. This class of states consists of the original meson
state |M+〉 and all final states |f〉 into which M+ can decay. Defining

|M+(t)〉 = |M+〉〈M+|U(t, 0)|M+〉 (18)

we can write

U(t, 0)|M+〉 = |M+(t)〉 +
∑

f

|f〉〈f |U(t, 0)|M+〉.

In order to find |M+(t)〉 we take a shortcut, by employing the exponential decay law to deduce

|M+(t)〉 = e−iMM te−Γt/2|M+〉 (19)

in the meson rest frame. The first term is the familiar time evolution factor of a stable state with
energy E = MM . The second factor involving the total width Γ is understood by considering
the probability to find an undecayed meson at time t:

∣∣〈M+|M+(t)〉
∣∣2 = e−Γt

Whenever I work in the Schrödinger picture I normalise the states as 〈M+|M+〉 = 1. Since
MM − iΓ/2 is independent of t, we can compute it using the familiar covariant formulation of
quantum field theory. The optical theorem tells us that MM and −Γ/2 are given by the real
and imaginary parts of the self-energy Σ (depicted in the left diagram of Fig. 2), where

−i(2π)4δ(4)(~p ′ − ~p)Σ =
〈M+(~p ′)|S|M+(~p)〉

2MM
(20)

(To be precise, the diagram in Fig. 2 corresponds to 2MMΣ, so that Σ = MM − iΓ/2 has mass
dimension 1.) From Eq. (19) we find

i
d

d t
|M+(t)〉 =

(
MM − i

Γ

2

)
|M+(t)〉. (21)

This equation can be generalised to a two-state system describing neutral meson mixing:

i
d

d t

(
|M(t)〉
|M(t)〉

)
= Σ

(
|M(t)〉
|M(t)〉

)
(22)
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where now Σ is the 2 × 2 matrix defined in Eq. (6). Recall that any matrix can be written as
the sum of a hermitian and an antihermitian matrix. We write

Σ = M − i
Γ

2
(23)

with the mass matrix M = M † and the decay matrix Γ = Γ†. Then

M12 =
Σ12 + Σ∗

21

2
,

Γ12

2
= i

Σ12 − Σ∗
21

2
. (24)

The expressions on the RHS of Eq. (24) are called absorptive and dispersive parts of Σ12. The
right diagram in Fig. 2 generically represents all contributions to Σ12. To compute Σ12 we can
certainly use perturbation theory for the weak interaction (which to lowest order amounts to the
calculation of the box diagram in Fig. 1), but we must take into account the non-perturbative
nature of the strong binding forces. The diagonal elements M11 and M22 are the masses of
M and M and are generated from the quark mass terms in L and from the binding energy of
the strong interaction. However, the off-diagonal elements M12 = M∗

21 and all elements of Γ
stem from the weak interaction and are therefore tiny in comparison with M11 and M22. The
only reason why we can experimentally access M12 roots in the CPT theorem: CPT symmetry
enforces

M11 = M22, Γ11 = Γ22, (25)

so that the eigenvalues of Σ are exactly degenerate for Σ12 = Σ21 = 0. Even the smallest Σ12

can lift the degeneracy and can lead to large meson-antimeson mixing.
With our shortcut we have avoided to prove that Eq. (21) holds with time-independent M

and Γ. In fact, Eq. (21) and the inferred exponential decay law in Eq. (19) are not valid exactly,
but receive tiny (and phenomenologically irrelevant) corrections [10]. The same statement is
true for Eqs. (22) and (23), a proper derivation of Eq. (22) using time-dependent perturbation
theory for the weak interaction employs the so-called Wigner-Weisskopf approximation [11].
Corrections to this approximation have been addressed in Ref. [13] and are below the 10−10

level.
We now proceed with the solution of our Schrödinger equation in Eq. (22). Eq. (11) means

that the eigenvectors of Σ in Eq. (6) are (p, q)T and (p,−q)T . That is, Σ is diagonalised as

Q−1ΣQ =

(
ML − iΓL/2 0

0 MH − iΓH/2

)
(26)

with

Q =

(
p p
q −q

)
and Q−1 =

1

2pq

(
q p
q −p

)
. (27)

The ansatz in Eq. (27) works because Σ11 = Σ22. The mass eigenstates |ML,H(t)〉 obey an expo-
nential decay law as |M+(t)〉 in Eq. (19) with (MM ,Γ) replaced by (ML,H ,ΓL,H). Transforming
back to the flavour basis gives

(
|M(t)〉
|M(t)〉

)
= Q

(
e−iMLt−ΓLt/2 0

0 e−iMH t−ΓHt/2

)
Q−1

(
|M〉
|M〉

)
(28)
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I adopt the following definitions for the average mass and width and the mass and width
differences of the mass eigenstates:

m =
MH +ML

2
= M11 = M22 , Γ =

ΓL + ΓH
2

= Γ11 = Γ22 ,

∆M = MH −ML , ∆Γ = ΓL − ΓH .
(29)

Note that ∆M is positive by definition while ∆Γ can have either sign. Experimentally the sign
of ∆Γ is only known for Kaons and my sign convention in Eq. (29) corresponds to ∆ΓK > 0.
The Standard-Model prediction for ∆ΓBd

and ∆ΓBs
is also positive, while no reliable prediction

is possible for the sign of ∆ΓD. The matrix appearing in Eq. (28) can be compactly written as

Q

(
e−iMLt−ΓLt/2 0

0 e−iMH t−ΓHt/2

)
Q−1 =




g+(t)
q

p
g−(t)

p

q
g−(t) g+(t)


 (30)

with

g+(t) = e−imt e−Γt/2

[
cosh

∆Γ t

4
cos

∆M t

2
− i sinh

∆Γ t

4
sin

∆M t

2

]
,

g−(t) = e−imt e−Γt/2

[
− sinh

∆Γ t

4
cos

∆M t

2
+ i cosh

∆Γ t

4
sin

∆M t

2

]
. (31)

Inserting Eq. (30) into Eq. (28) gives us a transparent picture of the meson-antimeson oscilla-
tions:

|M(t)〉 = g+(t) |M〉 +
q

p
g−(t) |M〉 ,

|M(t)〉 =
p

q
g−(t) |M〉 + g+(t) |M〉 , (32)

We verify g+(0) = 1 and g−(0) = 0 and find that g±(t) has no zeros for t > 0 if ∆Γ 6= 0.
Hence an initially produced M will never turn into a pure M or back into a pure M . We will
frequently encounter the combinations

|g±(t)|2 =
e−Γt

2

[
cosh

∆Γ t

2
± cos (∆mt)

]
,

g∗+(t) g−(t) =
e−Γt

2

[
− sinh

∆Γ t

2
+ i sin (∆mt)

]
. (33)

2.2 ∆M , ∆Γ and CP violation in mixing

We still need to solve our eigenvalue problem. The secular equation for the two eigenvalues
σL,H = ML,H− iΓL,H/2 of Σ is (Σ11−σL,H)2−Σ12Σ21 = 0. The two solutions of this equation
therefore satisfy

(σH − σL)
2

= 4 Σ12Σ21

or

(∆M + i
∆Γ

2
)2 = 4

(
M12 − i

Γ12

2

)(
M∗

12 − i
Γ∗

12

2

)
. (34)
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Taking real and imaginary part of this equation leads us to

(∆M)2 − 1

4
(∆Γ)2 = 4 |M12|2 − |Γ12|2 , (35)

∆M ∆Γ = −4 Re (M12Γ
∗
12) , (36)

Further Eq. (26) implies [Q−1ΣQ]12 = [Q−1ΣQ]21 = 0, which determines

q

p
= −∆M + i∆Γ/2

2M12 − iΓ12
= − 2M∗

12 − iΓ∗
12

∆M + i∆Γ/2
. (37)

(There is also a second solution with the opposite sign, which, however, is eliminated by im-
posing ∆M > 0.) For the simplification of Eqs. (35–37) it is useful to identify the physical
quantities of the mixing problem in Eqs. (22) and (23). In quantum mechanics we can always
multiply either |M〉 or |M〉 by an arbitrary phase factor without changing the physics. This
will change the phases of M12, Γ12 and q/p, none of which can therefore have any physical
meaning. The three physical quantities of meson-antimeson mixing are

|M12|, |Γ12|, and φ = arg

(
−M12

Γ12

)
. (38)

Eq. (36) then reads

∆M ∆Γ = 4 |M12||Γ12| cosφ. (39)

We can easily solve Eqs. (35) and (39) to express ∆M and ∆Γ, which we want to measure by
studying meson time evolutions, in terms of the theoretical quantities |M12|, |Γ12| and φ. We
recognise that the phase φ is responsible for CP violation in mixing introduced after Eq. (17):
By multiplying the two expression for q/p in Eq. (37) with each other we find

(
q

p

)2

=
2M∗

12 − iΓ∗
12

2M12 − iΓ12
=

M∗
12

M12

1 + i

∣∣∣∣
Γ12

2M12

∣∣∣∣ e
iφ

1 + i

∣∣∣∣
Γ12

2M12

∣∣∣∣ e
−iφ

. (40)

We immediately verify from this expression that φ 6= 0, π indeed implies |q/p| 6= 1, which defines
CP violation in mixing.

Interestingly, CP violation in mixing is small (if quantified in terms of |q/p| − 1) for the K,
Bd and Bs systems. For D−D mixing this is most likely also the case, but the experimental
data are not accurate enough at present. In the case of K−K mixing we have established
this phenomenon in Eq. (17) from the measured value of Re ǫK in Eq. (16). In the B−B
mixing systems the line of arguments is as follows: Experimentally we know ∆M ≫ ∆Γ and
theoretically |Γ12| ≪ ∆M is firmly established from a SM calculation, since the possible impact
of new physics on |Γ12| is small. Then Eqs. (35) and (39) imply ∆M ≈ 2|M12| and therefore
|Γ12| ≪ |M12|, so that the second term in the numerator and denominator of Eq. (40) is small,
irrespective of the value of φ. Thus |q/p| ≃ 1 for Bd and Bs mesons. It is useful to define the
quantity a through

∣∣∣∣
q

p

∣∣∣∣
2

= 1 − a. (41)
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For the K, Bd and Bs systems we know that a is small. By expanding (q/p)2 in Eq. (40) in
terms of φ or Γ12/M12 we find

a =
4|Γ12| |M12|

4|M12|2 + |Γ12|2
φ+ O(φ2), for K−K mixing (42)

a = Im
Γ12

M12
+ O

((
Im

Γ12

M12

)2
)

=

∣∣∣∣
Γ12

M12

∣∣∣∣ sinφ , for B−B mixing. (43)

With this result it is straightforward to solve Eqs. (35) and (39) for ∆M and ∆Γ. Incidentally,
in both cases we have

∆M ≃ 2 |M12|, (44)

∆Γ ≃ 2 |Γ12| cosφ. (45)

which holds up to corrections of order φ2 for Kaons and of order |Γ12/M12|2 for B mesons.
Of course, in the former case one can also replace cosφ by 1. Importantly, in B physics one
deduces from Eq. (37) that

q

p
= − M∗

12

|M12|
[1 + O(a)] . (46)

That is, the phase of −q/p is essentially given by the phase of the Bd−Bd or Bs−Bs box
diagram in Fig. 1. Since B−B mixing is dominated by the box diagram with internal tops we
readily infer

− q
p

= −V
∗
tbVtq
VtbV ∗

tq

= − exp[i arg (V ∗
tbVtq)

2] for Bq−Bq mixing with q = d, s (47)

up to tiny corrections of order a.

2.3 Time-dependent decay rates

Flavour factories are e+e− colliders whose CMS energy matches the mass of an excited quarko-
nium state, which predominantly decays into (M,M) pairs. Running on the ψ(3770), Υ(4S) or
Υ(5S) resonances, one copiously produces (D,D), (Bd, Bd) or (Bs, Bs) mesons. The (M,M)
pairs are in an entangled quantum-mechanical state until the decay of one of the mesons is
observed. If the decay mode M → f is allowed while M → f is forbidden one calls M → f
a flavour-specific mode or a tagging mode. The most prominent examples are the semileptonic
decays M → Xℓ+νℓ. For the discovery of Bs−Bs mixing the flavour-specific mode Bs → D−

s π
+

has played an important role [14]. A flavour-specific decay tags the decaying meson as either
M or M . The Einstein-Podolsky-Rosen effect then ensures that the other meson is an M or M ,
respectively. The time of the flavour tagging “starts the clock”, i.e. defines t = 0 in Eqs. (31)
and (32). This method is called opposite-side tagging. In hadron colliders pairs of different
hadrons can be produced, e.g. a Bs can be produced together with a B− or Λb plus several
lighter hadrons. Still, at the quark level (b, b) pairs are produced, so that the flavour tagging
works as well. As an addition possibility, hadron colliders permit same-side tagging, where the
flavour is determined at the time of the hadronisation process: When, say, a b-quark hadronises
into a B meson several pions and Kaons are produced as well. The charges of these light mesons
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are correlated with the charge of the light valence quark, which in the case of the B meson is
an anti-d quark.

The time-dependent decay rate of a meson tagged at t = 0 as M is defined as

Γ(M(t) → f) =
1

NM

dN(M(t) → f)

d t
, (48)

where dN(M(t) → f) denotes the number of decays into the final state f occuring within the
time interval between t and t+ d t. NM is the total number of M ’s produced at time t = 0. An
analogous definition holds for Γ(M(t) → f). One has

Γ(M(t) → f) = Nf |〈f |S|M(t)〉|2 , Γ(M(t) → f) = Nf

∣∣〈f |S|M(t)〉
∣∣2 (49)

with the time-independent normalisation factor Nf comprising the result of the phase-space
integration. It is straightforward to calculate Γ(M(t) → f) and Γ(M(t) → f) in terms of Af
and Af defined in Eq. (12), we just need to insert |M(t)〉 and |M(t)〉 from Eq. (32) into Eq. (49).
Trading Af for λf (see Eq. (13)) and a (see Eq. (41)) and making use of Eq. (33) we find the
desired formulae:

Γ(M(t) → f) = Nf |Af |2 e−Γt

{
1 + |λf |2

2
cosh

∆Γ t

2
+

1 − |λf |2
2

cos(∆M t)

−Reλf sinh
∆Γ t

2
− Imλf sin (∆M t)

}
, (50)

Γ(M(t) → f) = Nf |Af |2
1

1 − a
e−Γt

{
1 + |λf |2

2
cosh

∆Γ t

2
− 1 − |λf |2

2
cos(∆M t)

−Reλf sinh
∆Γ t

2
+ Imλf sin(∆M t)

}
. (51)

Often we want to compare these decay modes with the corresponding decays into the final state
which is CP-conjugate with respect to f . For states f with two or more particles we define

|f〉 = CP |f〉 , (52)

while for the initial one-particle states we have defined CP in Eq. (9). For example, for
f = D−

s π
+ the CP -conjugate state is f = D+

s π
−. Whenever we discuss CP (or any other

discrete transformation) in decay processes, we apply the transformation in the rest frame of
the decaying meson. The transformation in Eq. (52) is understood to reverse the signs of three-
momenta as in Eq. (9). For a two-body final state, which are our prime focus, we can rotate
this mirror-reflected state by 180◦, so that the three-momenta of the rotated CP -transformed
state coincide with those of the original state. This procedure is usually implicitly understood
when people discuss decays into CP eigenstates composed of two distinct particles, such as
K → π+π−. For a CP eigenstate fCP Eqs. (10) and (52) imply |fCP〉 = ηf |fCP〉.
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In the M(t) → f decay rates it is advantageous to keep Af while trading Af for λf :

Γ(M(t) → f) = Nf

∣∣∣Af
∣∣∣
2

e−Γt (1 − a)

{
1 + |λf |−2

2
cosh

∆Γ t

2
−

1 − |λf |−2

2
cos(∆M t)

−Re
1

λf
sinh

∆Γ t

2
+ Im

1

λf
sin(∆M t)

}
, (53)

Γ(M(t) → f) = Nf

∣∣∣Af
∣∣∣
2

e−Γt

{
1 + |λf |−2

2
cosh

∆Γ t

2
+

1 − |λf |−2

2
cos(∆M t)

−Re
1

λf
sinh

∆Γ t

2
− Im

1

λf
sin(∆M t)

}
. (54)

Eqs. (50–51) and Eqs. (53–54) are our master formulae to calculate any time-dependent
decay rate of interest. We discuss two important applications here. The first one is the time
dependence of a flavour-specific decay, which satisfies Af = Af = λf = 1/λf = 0. In addition

we consider a decay mode with |Af | = |Af |, that is without direct CP violation. Semileptonic
decays satisfy both conditions. Our master formulae become very simple for this case. Defining
the mixing asymmetry,

A0(t) =
Γ(M(t) → f) − Γ(M(t) → f)

Γ(M(t) → f) + Γ(M(t) → f)
, (55)

one finds to order a:

A0(t) =
cos(∆M t)

cosh(∆Γ t/2)
+
a

2

[
1 − cos2(∆M t)

cosh2(∆Γ t/2)

]
. (56)

Not that A0(t) is not a CP asymmetry. Instead Γ(M(t) → f) ∝ |〈M |M(t)〉|2 is proportional to
the probability that an “unmixed” M decays to f at time t, while Γ(M(t) → f) ∝ |〈M |M(t)〉|2
is the corresponding probability for the process M → M → f . The asymmetry A0(t) is often
employed to measure ∆M . In the ARGUS discovery of Bd−Bd mixing [7] no time-dependence
was observed. Instead so-called like-sign dilepton events were observed in semileptonic (Bd, Bd)
decays, meaning that one of the two mesons must have mixed. By counting these events and
comparing the number with the number of opposite-sign dilepton events one can infer the
quantity x = ∆M/Γ. The corresponding formula can be found by integrating our master
formulae over t.

The CP asymmetry in flavour-specific decays (often called semileptonic CP asymmetry)
reads

afs ≡ Γ(M(t) → f) − Γ(M(t) → f)

Γ(M(t) → f) + Γ(M(t) → f)
=

1 − (1 − a)2

1 + (1 − a)2
= a+ O(a2). (57)

Define the untagged decay rate

Γ[f, t] = Γ(M(t) → f) + Γ(M(t) → f) (58)

to find:

afs,unt(t) =
Γ[f, t] − Γ[f, t]

Γ[f, t] + Γ[f, t]
=

afs

2
− afs

2

cos(∆M t)

cosh(∆Γt/2)
. (59)
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Hence no tagging is needed to measure afs! We observe that we can determine the three
physical quantities characterising meson-antimeson mixing, |M12|, |Γ12| and a, by measuring
∆M , ∆Γ and afs. At present all three quantities are only measured for K−K mixing! Also
the semileptonic CP asymmetry of B mesons can be measured without observing any time
dependence. In the spirit of ARGUS we can compare the positively-charged like-sign dilepton
pairs with the negatively-charged ones. Such measurements are performed at the B factories
and the Tevatron, but no non-zero semileptonic CP asymmetry has been established by now.

Amusingly, the oscillations drop out from the tagged quantity in Eq. (57), while they persist
in Eq. (59). In most applications one can neglect the tiny a in Eqs. (50–51) and Eqs. (53–54).
Then we realise that in the untagged rates, obtained by adding Eqs. (50) and (51) or Eqs. (53)
and (54), the terms involving cos(∆Mt) and sin(∆Mt) vanish.

The second application of our master formulae are decays into CP eigenstates, M → fCP.
The time-dependent CP asymmetry is

afCP(t) =
Γ(M(t) → fCP) − Γ(M(t) → fCP)

Γ(M(t) → fCP) + Γ(M(t) → fCP)
. (60)

Using Eq. (50) and Eq. (51) one finds

afCP(t) = −A
dir
CP cos(∆M t) +Amix

CP sin(∆M t)

cosh(∆Γ t/2) +A∆Γ sinh(∆Γ t/2)
+ O(a) , (61)

with (for f = fCP)

Adir
CP =

1 − |λf |2

1 + |λf |2
, Amix

CP = − 2 Imλf

1 + |λf |2
, A∆Γ = − 2 Reλf

1 + |λf |2
. (62)

Note that |Adir
CP |2 + |Amix

CP |2 + |A∆Γ|2 = 1. Experimentally one can track the time-dependence of
af (t) and read off the coefficients of cos(∆M t) and sin(∆M t), so that one can determine |λf |
and Imλf . When studying decay amplitudes we can treat the weak interaction perturbatively
by drawing quark-level Feynman diagrams involving the exchange of W-bosons. While we
cannot fully compute those diagrams, because we cannot estimate how the quarks are “dressed”
by the strong intercation, we can still assess the CP-violating phases by identifying the CKM
elements in the diagrams. Decays in which all contributing Feynman diagrams carry the same
CP-violating phase are called golden modes. These modes satisfy |Af | = |Af |, so that there is
no direct CP violation. In a golden M → fCP decay this means |λfCP | = 1 and in Eqs. (61)
and (62) we have Adir

CP = 0 and
Amix
CP = ImλfCP . (63)

Moreover the phase of AfCP/AfCP is trivially read off from the phase of the CKM elements. In
B physics, where we also know the phase of q/p from Eq. (47), we can therefore directly relate
the measured ImλfCP to phases of CKM elements, if M → fCP is golden.

3 Third lecture: Linking quarks to mesons

3.1 The Cabibbo-Kobayashi-Maskawa matrix

We have encountered the CKM matrix V in Eq. (3). A unitary 3×3 matrix can be parameterised
by three angles and six complex phases. With the rephasings in Eqs. (7) and (8) we can eliminate
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five phases from V leaving us with one physical CP -violating phase. In the parameterisation
favoured by the Particle Data Book on has

V =




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13


 , (64)

where cij = cos θij and sij = sin θij . The real angles θij may be chosen so that 0 ≤ θij ≤ π/2,
and the phase δ13 so that −π < δ13 ≤ π. For the discussion of CKM metrology it is useful to
introduce the Wolfenstein parameterisation [15]

V =




1 − 1

2λ
2 λ Aλ3(ρ− iη)

−λ 1 − 1
2λ

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



+O(λ4) , (65)

which is an expansion in terms of the small parameter λ = 0.22. The remaining three parameters
A, ρ and η are a bit smaller than 1. The Wolfenstein parameterisation nicely reveals the
hierarchical structure of the CKM matrix, with diagonal elements of order 1 and smallest
elements in the upper right and lower left corners. We can now understand why the prediction
of mc from ∆MK in 1974 was successful: Any contribution involving the top quark (at that time
unknown and unimagined by the authors of Ref. [3]) to the upper left diagram in Fig. 1 is highly
suppressed by small CKM elements, since |VtdVts| ≃ λ5, while |VcdVcs| ≃ |VudVus| ≃ sin θc ≃ λ.
Further the upper left 2 × 2 submatrix, the Cabibbo matrix, is almost unitary and involves
only a single parameter, the Cabibbo angle θc with Vud ≃ Vcs ≃ cos θc and Vus ≃ −Vcd ≃ λ.
Therefore the two new elements Vcd and Vcs predicted in Ref. [2] were completely fixed in terms
of the known θc. In the Wolfenstein approximation only Vub and Vtd have a complex phase and
CP violation is characterised by η 6= 0.

Any unitary 3 × 3 matrix satisfies

V ∗
1jV1k + V ∗

2jV2k + V ∗
3jV3k = δjk (66)

and V ∗
j1Vk1 + V ∗

j2Vk2 + V ∗
j3Vk3 = δjk. (67)

If we choose j 6= k the three terms add to zero. We can depict the relations in Eqs. (66) and
(67) as triangles in the complex plane, e.g. for Eq. (66) the three corners are located at 0, V ∗

1jV1k

and −V ∗
2jV2k. The three sides can be associated with the three terms summing to zero. The

area of all six triangles is the same and given by J/2, where J is the Jarlskog invariant [16]

J ≡ Im [V ∗
tdVtbV

∗
ubVud] = c12c23c

2
13s12s23s13 sin δ13 ≃ A2λ6η. (68)

Here the second expression refers to the exact parameterisation of Eq. (64) and the last result
uses the Wolfenstein approximation. Four of the six unitarity triangles are squashed, the
three sides are similar only for the choice (j, k) = (3, 1). Moreover, within the Wolfenstein
approximation the shapes of the triangles corresponding to Eqs. (66) and (67) are equal for
(j, k) = (3, 1). Applying the phase transformations of Eqs. (7) and (8) rotates the unitarity
triangles in the complex plane, but leaves their shape fixed. Seeking a definition of a rephasing-
invariant unitarity triangle with a physical meaning we divide Eq. (66) (for (j, k) = (3, 1)) by
V ∗

23V21 = V ∗
cbVcd to arrive at

V ∗
ubVud
V ∗
cbVcd

+
V ∗
tbVtd
V ∗
cbVcd

+ 1 = 0 (69)
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ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Figure 3: The (standard) unitarity triangle.

When people speak of “the” unitarity triangle they refer to the rescaled triangle defined by
Eq. (69). Since its baseline coincides with the interval [0, 1] of the real axis, the unitarity
triangle is completely determined by the location of its apex (ρ, η), where

ρ+ iη ≡ −V
∗
ubVud
V ∗
cbVcd

. (70)

Inserting Eq. (65) into Eq. (70) one realises that (ρ, η) = (ρ, η) within the Wolfenstein approx-
imation, which here is good to an accuracy of 3%. The unitarity triangle is depicted in Fig. 3.
The two non-trivial sides of the triangle are

Ru ≡
√
ρ2 + η2, Rt ≡

√
(1 − ρ)2 + η2. (71)

CP -violating quantities are associated with the triangle’s three angles

α = arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β = arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ = arg

[
−VudV

∗
ub

VcdV ∗
cb

]
. (72)

The angle γ coincides with δ13 of Eq. (64) at the sub-permille level. With Eqs. (70–72) one
obtains

ρ+ iη = Rue
iγ , 1 − ρ− iη = Rte

−iβ . (73)

The unitarity relation of Eq. (69) now simply reads

Rue
iγ +Rte

−iβ = 1 (74)

Taking real and imaginary parts of Eq. (74) reproduces formulae which you know from high-
school geometry, allowing us to express any two of the four quantities Ru, Rt, γ, β in terms of
the remaining two ones. By multiplying Eq. (74) with either exp(−iγ) or exp(iβ) one finds
analogous relations involving α = π − β − γ.

Sometimes one needs to refine the Wolfenstein approximation to higher orders in λ. It is
prudent to define [17]

λ ≡ s12, Aλ2 ≡ s23 (75)
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to all orders in λ and to expand all CKM elements in terms of λ, A, ρ and η to the desired
order in λ. Then, for example:

Vub = Aλ3(ρ− iη)

(
1 +

λ2

2
+ O(λ4)

)
. (76)

The phase

βs = arg

[
−VtsV

∗
tb

VcsV ∗
cb

]
= λ2η +O(λ4) (77)

plays an important role in Bs−Bs mixing; βs is small, of order 0.02 (equal to 1 degree). In the
phase convention of Eq. (64) the phase of VcsV

∗
cb is O(λ6) and

arg(−Vts) = βs(1 +O(λ2)). (78)

Organising the phases in powers of λ, we find all CKM elements real to order λ2 except for Vub,
Vtd and Vts. Going to higher orders one encounters arg(−Vcd) ≃ A2ηλ4 and arg(Vcs) ≃ −A2ηλ6.

3.2 Effective Hamiltonians

We now address the strong interaction, which is the main obstacle on our way from quark
diagrams to mesonic amplitudes like M12 and A(M → f). In Sect. 1.1 we have seen that
weak processes of mesons are multi-scale processes. For instance, B−B mixing involves three
largely separated scales, since mt ∼MW ≫ mb ≫ ΛQCD. These scales must be disentangled to
separate the short-distance QCD, which is described by the exchange of quarks and gluons, from
the long-distance hadronic physics, whose characteristic property is the confinement of quarks
into hadrons. The key tool to separate the physics associated with the scale mheavy from the
dynamics associated with mlight ≪ mheavy is the construction of an effective field theory. The
corresponding effective Hamiltonian Heff is designed to reproduce the S-matrix elements of the
Standard Model up to corrections of order (mlight/mheavy)

n where n is a positive integer:

〈f |Te−i
R

d4xHSM
int (x)|i〉 = 〈f |Te−i

R

d4xHeff (x)|i〉
[
1 + O

(
mlight

mheavy

)n ]
(79)

I exemplify the method with an effective Hamiltonian which reproduces the amplitude for B−B
mixing up to corrections of order m2

b/M
2
W . That is, we employ Eq. (79) for the case i = B

and f = B (where B = Bd or Bs), mlight = mb and mheavy = MW ∼ mt. The corresponding
effective Hamiltonian reads

Heff = HQCD(f=5) +HQED(f=5) +H |∆B|=2. (80)

Here the first two terms are the usual QCD and QED interaction Hamiltonians with 5 “active
flavours”, meaning that they do not involve the top quark. The last term describes the weak
interaction. Adapted to the process under study, H |∆B|=2 only encodes the physics related to
B−B mixing, but does not describe other weak processes such as meson decays. It is called
H |∆B|=2, because it describes physical processes in which the bottom quantum number B
changes by two units. H |∆B|=2 does not contain W-boson, Z-boson or top-quark fields, instead
the ∆B = 2 transition of the box diagram in Fig. 1 is mediated by an effective four-quark
coupling:

Q = qLγνbL qLγ
νbL with q = d or s. (81)
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q

b

Figure 4: The four-quark operator Q for Bq−Bq mixing with q = d or s.

For historical reasonsQ is called a four-quark operator, but it is nothing but a point-like coupling
of four quark fields as shown in Fig. 4. We have

H |∆B|=2 =
G2
F

4π2
(VtbV

∗
tq)

2 C|∆B|=2(mt,MW , µ)Q(µ) + h.c. (82)

where the lengthy expression multiplying Q is just the effective coupling constant multiplying
the four-quark interaction of Fig. 4. This coupling constant is split into several factors, the first
of which contains the Fermi constant GF . The second factor summarises the CKM elements
of the box diagram and the third factor C|∆B|=2(mt,MW , µ) is the Wilson coefficient, which
contains the information on the heavy mass scales MW and mt. Finally µ is the renormal-
isation scale, familiar from QCD. Just as any other coupling also Q must be renormalised.
The renormalised operator Q depends on µ through the renormalisation constant ZQ(µ) via
Q = ZQQ

bare and (in a mass-independent scheme like MS) the latter dependence is only im-
plicit through g(µ), where g is the QCD coupling constant.3 With the decomposition in Eq. (82)
C|∆B|=2 has dimension two and is real.

C|∆B|=2 is calculated from the defining property of Heff in Eq. (79): We compute the
∆B = 2 process both in the Standard Model and with the interactions of Heff and adjust
C|∆B|=2 such that the two results are the same, up to corrections of order m2

b/M
2
W . Obviously

we cannot do this with mesons as external states i and f . But a crucial property of Heff is
the independence of the Wilson coefficient on the external states. We can compute it for an
arbitrary momentum configuration for the external quarks as long as the external momenta are
of the order ofmlight. That is, we do not need to know the complicated momentum configuration
of quarks bound in a meson state. Further all QCD effects in C|∆B|=2 are purely perturbative:

C|∆B|=2 = C|∆B|=2,(0) +
αs(µ)

4π
C|∆B|=2,(1) + . . . (83)

We can understand why and how this works if we expand the result of the box diagram of Fig. 1
in terms of the momenta of the external quarks, which are at most of order mb. The leading
term consists of the result of a loop integral with external momenta set to zero and the spinors
of the external quark states. Now the “effective theory side” of Eq. (79) involves the tree-level

3The analogy with the renormalisation of the QCD coupling constant is more obvious if one reads the product
CZQQbare in a different way: By assigning ZQ to C rather than Q one may view C as a renormalised coupling
constant. The notion of a “renormalised” operator instead of a ”renormalised Wilson coefficient” has historical
reasons.
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diagram corresponding to

〈f |Te−i
R

d4xHeff (x)|i〉(0) ≃ −i〈f |Heff(x)|i〉(0) = −i〈f |H |∆B|=2(x)|i〉(0)

= −i(2π)4δ(4)(pf − pi)
G2
F

4π2
(VtbV

∗
tq)

2 C|∆B|=2,(0) 〈f |Q|i〉(0)

where |i〉 = |pb, sb; pq, sq〉 and |f〉 = |pq, sq; pb, sb〉 are the external states characterised by the
momenta and spins of the quarks. The superscript “(0)” indicates the lowest order of QCD
everywhere. Since 〈f |Q|i〉 reproduces the spinor structure (“Dirac algebra”) of the box diagram,
the coefficient C|∆B|=2,(0) inferred from this matching calculation is solely determined in terms
of the loop integral and therefore only depends on MW and mt. The matching calculation
becomes less trivial when we go to the next-to-leading order (NLO) of QCD. Now HQCD enters
the matching calculation and we must dress both the box diagram and the effective diagram in
Fig. 4 with gluons in all possible ways. Denoting the SM amplitude by

M = M(0) +
αs
4π

M(1) + . . . , (84)

our NLO matching calculation amounts to the determination of C|∆B|=2,(1) from

−M(0) − αs
4π

M(1) =
G2
F

4π2
(VtbV

∗
tq)

2
[
C|∆B|=2,(0) +

αs
4π
C|∆B|=2,(1)

]

·
[
〈Q〉(0) +

αs
4π

〈Q〉(1)
] [

1 + O
(
m2
b

M2
W

)]
+ O

(
α2
s

)
(85)

On the RHS the external states are suppressed for simplicity of notation. The QCD corrections
to the box diagram in M(1) not only depend on the light scales, i.e. external momenta and
light quark masses, they also suffer from infrared (IR) divergences. These divergences signal
the breakdown of QCD perturbation theory at low energies. However, the gluonic corrections
to Fig. 4, which are comprised in 〈Q〉(1), exactly reproduce the infrared structure of the SM
diagrams: They involve the same IR divergences and have the same dependence on the light
mass scales. Collecting the O(αs) terms from Eq. (85),

−M(1) =
G2
F

4π2
(VtbV

∗
tq)

2
[
C|∆B|=2,(0)〈Q〉(1) + C|∆B|=2,(1)〈Q〉(0)

]
, (86)

one finds identical IR structures on the LHS and in the first term in the square brackets, while
C|∆B|=2,(1) only contains heavy masses and no IR divergences. In conclusion, the IR structure
of the SM amplitude properly factorises with an “infrared-safe” C|∆B|=2. This success can be
understood by separately discussing the regions of small and large loop momentum passing
through a gluon line in the diagrams of M(1). The infrared-sensitive diagrams are identified as
those in which the gluon connects two external quark lines. (The other diagrams are infrared-
finite and one can set the light mass parameters to zero.) If the loop momentum traversing the
gluon line is small, we can neglect it in the heavy top and W propagators. Therefore the loop
integration factorises into two one-loop integrations and the second loop integral involving the
heavy particles simply reproduces the one-loop result contained in C|∆B|=2,(0). The gluon-loop
integration —still over soft momenta only— is equal to the one in the corresponding diagram
in 〈Q〉(1), where the gluon connects the same quark lines. Therefore the region of integration
with a soft gluon factorises with the leading-order coefficient C|∆B|=2,(0) in Eq. (85). The
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region of the momentum integration with a hard gluon momentum does not factorise in this
way and contributes to C|∆B|=2,(1). However, the region of large gluon loop momentum is not
infrared-sensitive and we can neglect the light momenta and masses. Therefore C|∆B|=2,(1)

does not depend on the light mass scales. Conversely, 〈Q〉 contains only small scales of order
mlight and encodes the full infrared structure of M. Therefore our quark-level calculation is
meaningful for C|∆B|=2, but not for 〈Q〉. In order to make a theoretical prediction for the B−B
mixing amplitude, we must compute 〈B|Q|B〉 with nonperturbative methods. The factorisation
of M into short-distance coefficients and long-distance operator matrix elements is also called
operator product expansion.

Here I only derive the result for the leading-order (LO) Wilson coefficient C|∆B|=2,(0). In a
first step let us decompose M(0) as

M(0) =
∑

j,k=u,c,t

V ∗
jbVjq V

∗
kbVkq M(0)

jk 〈Q〉(0), q = d or s, (87)

where M(0)
jk is the result of the box diagram containing internal quark flavours (j, k) with the

CKM elements factored out. We then write

M(0)
jk = −G2

F

4π2
M2
W S̃(xj , xk) (88)

with xj = m2
j/M

2
W . The function S̃(xj , xk) is symmetric, S̃(xj , xk) = S̃(xk, xj). In the next

step we use CKM unitarity to eliminate V ∗
ubVuq = −V ∗

tbVtq − V ∗
cbVcq from Eq. (87):

−M(0) =
G2
F

4π2
M2
W

[
(V ∗
tbVtq)

2 S(xt) + 2V ∗
tbVtq V

∗
cbVcqS(xc, xt) + (V ∗

cbVcq)
2 S(xc)

]
〈Q〉(0).

(89)

S and S̃ are related as

S(xj , xk) = S̃(xj , xk) − S̃(xj , 0) − S̃(0, xk) + S̃(0, 0), for j, k = c, t,

S(x) ≡ S(x, x), (90)

where I have set the up-quark mass to zero. In Eq. (89) the last two terms are tiny, because
xc ∼ 10−4 and

S(xc) = O(xc), S(xc, xt) = O(xc lnxc). (91)

This consequence of CKM unitarity is called the Glashow-Iliopoulos-Maiani (GIM) suppression,
related to the vanishing of FCNCs in the limit of equal internal quark masses (here mc and
mu = 0). No GIM suppression occurs in top loops, because xt ∼ 4. The dominant contribution
to Eq. (87) involves

S(xt) = xt

[
1

4
+

9

4

1

1 − xt
− 3

2

1

(1 − xt)2

]
− 3

2

[
xt

1 − xt

]3
lnxt ≈ 2.3. (92)

The tiny charm contribution does not contribute to C|∆B|=2,(0) at all; to accomodate for it
we must refine our operator product expansion to include higher powers of (mlight/mheavy) in
Eq. (79). We can read off C|∆B|=2,(0) from Eq. (87):

C|∆B|=2,(0)(mt,MW , µ) = M2
W S (xt). (93)
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The functions S(x) and S(xc, xt) are called Inami-Lim functions [28].
The factorisation in Eqs. (79) and (85) also solves another problem: No largely separated

scales appear in C|∆B|=2(mt,MW , µ) provided that we take µ = O(MW ,mt), so that no large
logarithms can spoil the convergence of the perturbative series. While no explicit µ-dependence
is present in our LO result in Eq. (93), there is an implicit µ-dependence throughmt(µ), which is
a running quark mass (typically defined in the MS scheme). C|∆B|=2,(1) also contains an explicit
ln(µ/MW ) term. Two sources contribute to this term: First, there is already a ln(µ/MW ) term
in M(1), familiar to us from matrix elements with MS-renormalised UV divergences. Second,
M(1) contains the large logarithm ln(mb/MW ) which is split between matrix elements and
Wilson coefficients as

ln
mb

MW
= ln

mb

µ
+ ln

µ

MW
. (94)

This feature is transparent from Eq. (86).
The scale µtW = O(MW ,mt) at which we invoke Eq. (85) to find C|∆B|=2 is called the

matching scale and C|∆B|=2(mt,MW , µtW ) has a good perturbative behaviour. Similarly, no
large logarithms occur in 〈Q(µb)〉, if we choose a scale µb ∼ mb in the matrix element. Since
the µ-dependence in H |∆B|=2 is spurious, we can take any value of µ we want, but this value
must be the same in C(µ) and 〈Q(µ)〉. That forces us to either relate C(µtW ) to C(µb) or to
express 〈Q(µb)〉 in terms of 〈Q(µtW )〉 in such a way that large logarithms

αns lnn
µtW
µb

(95)

are summed to all orders n = 0, 1, 2 . . . in perturbation theory. This can be achieved by solving
the renormalisation group (RG) equation for either C(µ) or 〈Q(µ)〉. All steps of this procedure
are analogous to the calculation of the running quark mass, which can be found in any textbook
on QCD. RG-improvement promotes our LO result to a leading-log (LL) quantity:

C|∆B|=2,(0)(mt,MW , µb) = u(0)(µb, µtW )C|∆B|=2,(0)(mt,MW , µtW ) (96)

〈Q(µtW )〉 = u(0)(µb, µtW )〈Q(µb)〉 (97)

u(0)(µb, µtW ) =

(
αs(µtW )

αs(µb)

) γ
(0)
+

2β
(5)
0 with γ

(0)
+ = 4. (98)

The evolution factor u(0)(µb, µtW ) depends on the anomalous dimension of Q, which equals

(αs/(4π))γ
(0)
+ to LL accuracy. β

(f)
0 = 11 − 2f/3 is the first term of the QCD β function. One

usually writes

C|∆B|=2(mt,MW , µb) = ηBbB(µb)C
|∆B|=2,(0)(mt,MW , µtW ) (99)

where all dependence on µb is absorbed into bB(µb) and all heavy scales reside in ηB. This
factorisation is possible to all orders in αs. It is trivially verified in the LL approximation of
Eq. (98), where simply u(0)(µb, µtW ) = ηBbB(µb). In Eq. (99) mt is understood as mt(mt) (and
not as mt(µtW )). In this way ηB is independent of µtW to the calculated order; the residual
µtW dependence is already tiny in the NLL result. ηB mildly depends on xt = m2

t/M
2
W and in

practice one can treat it as a constant number [18]:

ηB = 0.55, bB(µb = mb = 4.2 GeV) = 1.5. (100)
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The dependences of bB on µb and the chosen renormalisation scheme cancel in the product
bB(µb)〈Q(µb)〉. The quoted number is for the MS–NDR scheme, where “NDR” refers to the
treatment of the Dirac matrix γ5. Details on this topic can be found in [19]. We see that
the impact of short-distance QCD corrections is moderate, since ηB bB(µb) = 0.84. The NLL
calculation of Ref. [18] has found only small two-loop corrections and the remaining uncertainty
affects ηB only in the third digit behind the decimal point. RG-improved perturbation theory
works superbly! Combining Eqs. (82), (93) and (99) we obtain our final expression for the
|∆B| = 2 hamiltonian:

H |∆B|=2 =
G2
F

4π2
M2
W (VtbV

∗
tq)

2 ηB S(xt)bB(µb)Q(µb) + h.c. (101)

Finally we cannot escape from quark confinement! Our hadronic matrix element is conven-
tionally parameterised as

〈Bq|Q(µb)|Bq〉 =
2

3
M2
Bq
f2
Bq

B̂Bq

bB(µb)
(102)

with the Bq meson decay constant fBq
and the bag factor B̂Bq

. The parameterisation in

Eq. (102) is chosen in such a way that B̂Bq
/bB(µb) is close to one. It will be especially useful

once precise experimental data on fBd
∼ fB+ from leptonic B+ decays will be available. With

the help of our effective field theory we have beaten the problem of long-distance QCD in B−B
mixing down to the calulation of a single number. Lattice gauge theory computations cover the
ranges [29]

fBd

√
B̂Bd

= (225 ± 35)MeV, fBs

√
B̂Bs

= (270 ± 45)MeV. (103)

The quoted hadronic uncertainties are the main problem in the extraction of |VtbVtq| from

the measured ∆MBq
. B̂Bd

could differ from B̂Bs
, but no computation has established any

significant difference by now.
Putting Eqs. (101) and (102) together we find the desired element of the B−B mass matrix:

M12 =
〈Bq|H |∆B|=2|Bq〉

2MBq

=
G2
F

12π2
ηBMBq

B̂Bq
f2
Bq
M2
W S

(
m2
t

M2
W

)(
VtbV

∗
tq

)2
. (104)

We remark that there is no contribution of H |∆B|=2 to Γ12, because 〈Bq|H |∆B|=2|Bq〉 has no
absorptive part. By inspecting Eq. (24) we can verify that the dispersive or absorptive part
of some amplitude can be calculated by replacing the loop integrals by their real or imaginary
parts, respectively, while keeping all complex CKM elements. But only diagrams with light
internal quarks involve loop integrals with a non-zero imaginary part. Hence we must extend
our effective-hamiltonian formalism to include the effects of light internal quarks in the box
diagrams, if we want to predict ∆ΓBq

. Contracting the heavy W-boson lines in the diagrams

of Fig. 1 to a point does not correspond to a contribution from H |∆B|=2 in the effective theory.
Instead this is a second-order effect involving some effective |∆B| = 1-Hamiltonian H |∆B|=1,
which we must add to Heff in Eq. (80). The relevant piece from the RHS of Eq. (79) is

−1

2

∫
d4xd4y 〈B|TH |∆B|=1(x)H |∆B|=1(y)|B〉. (105)
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Figure 5: Second-order contribution of H |∆B|=1 to Bs−Bs mixing. The diagrams constitute
the dominant contribution to ∆ΓBs

.

The LO contribution to this bilocal matrix element is depicted in Fig. 5 for the case of Bs−Bs
mixing. The contribution from Eq. (105) to B−B mixing is much smaller than the one
from H |∆B|=2, which is enhanced due to the heavy top mass entering Eq. (92). Therefore we
can neglect the bilocal contribution in M12 and only need to consider it for Γ12. From this
observation we also conclude that |Γ12| ≪ |M12| leading to |∆Γ| ≪ ∆M , which we already
exploited in Eqs. (43–47).

3.3 SM predictions of ∆M , ∆Γ and afs

In Sec. 3.2 we have collected all ingredients of the SM calculation of ∆M = 2|M12| for the Bd
and Bs systems. Looking at Eq. (65) we realise that |Vtb| is well-known and |Vts| is essentially
fixed by the well-measured |Vcb|. From Eqs. (104) and (103) we find the SM prediction

∆MBs
= (12.5 ± 4.3) meV = (19.0 ± 6.6) ps−1. (106)

The first unit is milli-electronvolt, a unit which we do not encounter often in high-energy physics.
By dividing with ~ one finds the second expression in terms of inverse picoseconds, which is
more useful since ∆M is measured from the oscillation frequency in Eq. (55). Eq. (106) is in
good agreement with the Tevatron measurement of [14, 20]

∆M exp
Bs

=
(
17.77± 0.10(stat) ± 0.07(syst)

)
ps−1. (107)

The corresponding quantity for Bd−Bd mixing is well-measured by several experiments with
[8]

∆M exp
Bd

= (333.7 ± 3.3) µeV = (0.507 ± 0.005) ps−1. (108)

We can use ∆MBd
to determine |Vtd|. From Eq. (104) we infer

∆MBd
= (0.52 ± 0.02) ps−1

( |Vtd|
0.0082

)2

fBd

√
B̂Bd

225 MeV




2

. (109)

The 16% error of the lattice value in Eq. (103) dominates the uncertainty on the extracted |Vtd|.
The all-order Wolfenstein parameterisation defined by Eqs. (70) and (75) implies

|Vtd| = Aλ3Rt + O(λ5). (110)
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Since Aλ2 ≃ |Vcb| is well-known, ∆MBd
essentially determines Rt, i.e. one side of the unitarity

triangle. Even better, we can use the ratio ∆MBd
/∆MBs

for the same purpose: If one forms
the ratio of the hadronic quantities in Eq. (103), many uncertainties drop out:

ξ =
fBs

√
B̂Bs

fBd

√
B̂Bd

= 1.20 ± 0.06. (111)

In the limit of exact flavour-SU(3) symmetry (corresponding to mu = md = ms) one has ξ = 1
which reduces the calculational task to compute the deviation of ξ from 1. The somewhat large
error in Eq. (111) reflects the ongoing discussion on potentially large chiral logarithms [21] which
may increase ξ significantly. This problem occurs, because lattice simulations use values for the
pion mass which are larger than the physical value. The extrapolation to mπ ≃ 140 MeV with
the help of chiral perturbation theory introduces this source of error. Sum-rule calculations of
ξ (or rather fBs

/fBd
) which automatically include these logarithms, however, give values at the

lower end of the range in Eq. (111) [22]. Further all short-distance QCD drops out from the
ratio ∆MBd

/∆MBs
, so that one simply has

∣∣∣∣
Vtd
Vts

∣∣∣∣ =

√
∆MBd

∆MBs

√
MBs

MBd

ξ. (112)

The Wolfenstein expansion leads to
∣∣∣∣
Vtd
Vts

∣∣∣∣ = Rtλ

[
1 + λ2

(
1

2
− ρ

)
+ O(λ4)

]
. (113)

Combining Eqs. (112) and (113) (and using MBs
/MBd

= 1.017) we easily derive a home-use
formula for Rt:

Rt = 0.887
∆MBd

0.507 ps−1

17.77 ps−1

∆MBs

ξ

1.2

λ

0.2246
[ 1 + 0.05 ρ ] (114)

Neither ρ ≈ 0.2 nor the 1% error on λ ≃ 0.2246 have an impact on the error of Rt. Using the
numerical input from Eqs. (107–108) and Eq. (111) we find

Rt = 0.90 ± 0.04 (115)

and the uncertainty is essentially solely from ξ in Eq. (111).
Next we discuss ∆Γ and the quantity afs in Eq. (57), which governs CP violation in mixing.

In order to find these quantities we need to calculate Γ12. This involves the diagrams of Fig. 5
and brings in a new feature, power corrections of order ΛQCD/mb [23]. NLL QCD corrections
to Γ12 in the B system have been calculated in Ref. [24, 25, 26]. In the SM the CP phase φ
of Eq. (38) is so small that one can set cosφ to 1 in Eq. (45). If we normalise ∆Γ to ∆M we
can eliminate the bulk of the hadronic uncertainties. Updated values, obtained by using an
improved operator basis, are [27]

∆ΓBs
=

(
∆ΓBs

∆MBs

)th

∆M exp
Bs

= 0.088 ± 0.017 ps−1, (116)

∆ΓBd
=

(
∆ΓBd

∆MBd

)th

∆M exp
Bd

=
(
26.7

+5.8
−6.5

)
· 10−4 ps−1. (117)
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Figure 6: Impact of adfs on the (ρ, η) plane: The solid blue curves limit the allowed range (defined

by the error in Eq. (120)) for a hypothetical measurement of ad exp
fs = −5 · 10−4. The solid red

curves are for ad exp
fs = −10−3 instead. For further information see Ref. [25], from which the

figure is taken.

The width difference in the Bs system amounts to 12.7± 2.4% of the average width ΓBs
≃ ΓBd

[27] and is in the reach of present experiments. Needless to say that there are no useful data
on ∆ΓBd

. The predictions for the CP asymmetries in flavour-specific decays of Eq. (57) are
calculated from Eq. (43) and read [25, 26, 27]

asfs = (2.06 ± 0.57) · 10−5 (118)

adfs =
(
−4.8

+1.0
−1.2

)
· 10−4. (119)

Also the current data for these CP asymmetries are not useful for CKM metrology. A future
measurement of ad exp

fs will add an interesting new constraint to the (ρ, η) plane [25]:

(η −Rfs)
2 + (1 − ρ)2 = R2

fs with Rfs = − ad exp
fs(

10.1
+1.8
−1.7

)
· 10−4

. (120)

The theory prediction of Refs. [25, 26] enters the denominator of Rfs, the quoted value is
consistent with Eq. (119) and stems from the update in Ref. [27]. Eq. (120) defines a circle
with radius Rfs centered around (ρ, η) = (1, Rfs). Therefore the circle touches the ρ axis at the
point (1, 0), see Fig. 6.

We have seen that the three quantities related to Bs−Bs mixing discussed in Eqs. (106),
(116) and (118) have little dependence on ρ and η. Only ∆MBs

has an impact on CKM
metrology, through Eq. (114). The small sensitivity to ρ and η becomes a virtue in searches for
new physics, where Bs−Bs mixing plays an important role.

Next we discuss K−K mixing: The calculation of M12 now forces us to compute box
diagrams of Fig. 1 with all possible quark flavours u, c, t, because the top contribution involving
S(xt) is suppressed by the small CKM factor (V ∗

tsVtd)
2 ≃ A4λ10(1−ρ+ iη)2. The charm and up

contributions, however, are proportional to only two powers of λ. Therefore we cannot neglect
these contributions despite of the smallness of S(xc) and S(xc, xt) (discussed around Eq. (91)).
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Their calculation proceeds in two major steps: First, the top quark and W-boson are integrated
out. In the resulting effective theory the ∆S = 2 transitions receive second-order contributions
from a |∆S| = 1-hamiltonian H |∆S|=1. We have already seen this in our discussion of ∆B = 2
transitions, the corresponding expression for K−K mixing is obtained by replacing H |∆B|=1

with H |∆S|=1 in Eq. (105) (and is decribed by the analogous diagrams of Fig. 5). In addition to
this bilocal contribution, the term with S(xc, xt) also involves a |∆S| = 2-hamiltonian H |∆S|=2

which mediates K−K mixing via a local four-quark operator, just as in the case of B−B
mixing. The |∆S| = 1 and |∆S| = 2 Wilson coefficients of this effective field theory are evolved
down to the scale µbc = O(mc) at which the second step of the calculation is performed: Now
the bottom and charm quarks are integrated out and the effective field theory set up in the first
step is matched to another effective field theory. The new theory treats mb and mc as heavy
scales, so that all box diagrams involving at least one charm quark are effectively contracted
to a point. All information on mc (and mb which plays a minor role) resides in the Wilson
coefficient of the local ∆S = 2 operator

Q = dLγνsL dLγ
νsL. (121)

The effective |∆S| = 2 hamiltonian can therefore be written in a similar way as the |∆B| = 2
hamiltonian of Eq. (101):

H |∆S|=2 =
G2
F

4π2
M2
W

[
(VtsV

∗
td)

2 ηtt S(xt) + 2VtsV
∗
tdVcsV

∗
cd ηct S(xc, xt)

+ (VcsV
∗
cd)

2 ηcc xc
]
bK(µK)Q(µK) + h.c. (122)

The NLL results for the short-distance QCD factors read

ηtt = 0.57, ηct = 0.47 ± 0.05, ηcc = (1.44 ± 0.35)

(
1.3 GeV

mc

)1.1

. (123)

The QCD coefficients in Eq. (123) were calculated to LL accuracy in Ref. [30]. The NLL
calculation of ηtt [18] is analogous to that of ηB , with one new feature: When crossing the
threshold µbc one must change the number of active flavours in the QCD β function and the
NLL anomalous dimension γ+ from f = 5 to f = 3. The NLL results for ηct [31] and ηcc
[32] have a sizable uncertainty, because they are sensitive to the low scale of µbc ∼ mc where
αs is large. ηcc also exhibits a sizable dependence on αs(MZ) and on mc = mc(mc), so that
the central values quoted in the literature vary over some range. The expression in Eq. (123)
approximates the dependence on mc and corresponds to αs(MZ) = 0.119 ± 0.002. The scale
µK must be chosen below mc and is typically taken around 1 GeV, where perturbation theory
is still applicable. One finds bK(µK = 1 GeV) = 1.24 ± 0.02 and the error stems from the
uncertainty in αs.

In the discussion of |∆S| = 2 transitions we must also address corrections of orderm2
light/m

2
heavy

which correspond to subleading terms in the operator product expansion of Eq. (79). While
these corrections are of order Λ2

QCD/m
2
t for the first term inH |∆S|=2, they are of order Λ2

QCD/m
2
c

in the case of the charm contributions involving S(xc, xt) = O(xc lnxc) and S(xc) ≃ xc in
Eq. (122). The largest of these power corrections involves two |∆S| = 1 operators and corre-
sponds to the box diagram in Fig. 1 with two internal up-quarks. To understand the power
counting, recall that the charm contribution in H |∆S|=2 is proportional to M2

Wxc = m2
c , while
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the box with up-quarks involves no power of mc, so that its size is characterised by the hadronic
energy scale ΛQCD. Including this bilocal contribution we write:

M12 =
1

2mK
〈K|H |∆S|=2|K〉 − Disp

i

4mK

∫
d4x 〈K|H |∆S|=1(x)H |∆S|=1(0)|K〉 . (124)

Here “Disp” denotes the dispersive part of the matrix element, which is introduced in Eq. (24)
and is discussed after Eq. (104). The enhancement of the second term stems from the so-
called ∆I = 0 rule which describes the non-perturbative enhancement of the decay Kshort →
(ππ)I=0. The two terms in Eq. (124) are usually referred to as short-distance and long-distance
contributions. The long-distance contribution has defied any reliable calculation from first
principles so far. In this humbling situation we can only compare the experimental value of
∆MK to the short-distance contribution

∆MSD
K =

|〈K|H |∆S|=2|K〉|
mK

(125)

In order to compute ∆MSD
K we need the hadronic matrix element

〈K|Q(µK)|K〉 =
2

3
M2
K f

2
K

B̂K
bK(µK)

. (126)

Contrary to the situation in the B system, the Kaon decay constant fK = 160 MeV is well-
measured. We remark here that we know B̂K in a particular limit of QCD: If the number of
colours Nc is taken to infinity, 〈K|Q(µK)|K〉 can be expressed in terms of the current matrix

element 〈0|dLγνsL|K〉 which defines fK . For Nc = ∞ one finds B̂K/bK(µK) = 3/4; including

certain calculable (“factorisable”) 1/Nc corrections changes this to B̂K/bK(µK) = 1. A recent
lattice calculation finds [33]

B̂K = 0.72 ± 0.04 (127)

The experimental value of the Klong–Kshort mass difference is [8]

∆M exp
K = (3.483 ± 0.006) µeV = (5.292 ± 0.009) · 10−3 ps−1. (128)

Inserting Eqs. (122) and (126) into Eq. (125) gives

∆MSD
K

∆M exp
K

= (0.98 ± 0.22)B̂K. (129)

∆MSD
K is dominated by the term proportional to (VcsV

∗
cd)

2 and the error in Eq. (129) essentially
stems from ηcc in Eq. (123). This uncertainty will shrink when ηcc is calculated to NNLL
accuracy. With Eq. (127) we find that H |∆S|=2 contributes (70± 25)% to the measured ∆MK .

The off-diagonal element of the decay matrix is given by

Γ12 = Abs
i

2mK

∫
d4x 〈K|H |∆S|=1(x)H |∆S|=1(0)|K〉 (130)

=
1

2mK

∑

f

(2π)4δ4(pK − pf )〈K|H |∆S|=1|f〉 〈f |H |∆S|=1|K〉 ≃ 1

2mK
A∗

0 A0 . (131)
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Here “Abs” denotes the absorptive part of the matrix element. Γ12 is an inclusive quantity
built out of all final states f into which both K and K can decay. A special feature of the
neutral Kaon system is the saturation of Γ12 by a single decay mode, which is K → (ππ)I=0.
The notation A0 and A0 for the corresponding decay amplitudes has been introduced after
Eq. (14). Γ12 is a non-perturbative quantity and its computation on the lattice involves the
difficult task to understand and master the ∆I = 0 rule. The relation between Γ12 and ∆ΓK
has been derived in Eq. (45). Experimentally we have [8]

∆Γexp
K = (7.335 ± 0.004)µeV = (11.144 ± 0.006) · 10−3 ps−1. (132)

With Eqs. (128) and (132) we have precise experimental information on |M12| ≃ ∆MK/2 and
|Γ12| ≃ ∆ΓK/2. To fully characterise K−K mixing we also need to know the phase φ defined
in Eq. (38). As in the case of B−B mixing we study a CP asymmetry in a flavour-specific
decay mode. With Eqs. (11) and (41) one easily finds

AL ≡ Γ(Klong → ℓ+ν π−) − Γ(Klong → ℓ−ν̄ π+)

Γ(Klong → ℓ+ν π−) + Γ(Klong → ℓ−ν̄ π+)

=
1 − |q/p|2
1 + |q/p|2 ≃ a

2
. (133)

At this point it is worthwile to look back at the quantity ǫK which we have encountered
in the first lecture in Eq. (14). From Eq. (17) we have learned that Re ǫK measures CP
violation in mixing quantified by 1− |q/p|, just as AL in Eq. (133). While Im ǫK is related to a
different physical phenomenon, namely mixing-induced CP violation, it provides the very same
information on the fundamental parameters of K−K mixing: Since K → (ππ)I=0 dominates
Γ12, the CP -violating phase of A0/A0 equals argΓ12, see Eq. (131). With this observation and
the help of Eq. (42) we can express ǫK in Eq. (17) entirely in terms of ∆MK , ∆ΓK and φ.
Interestingly, the phase φǫ of ǫK (see Eq. (14)) is simply given by

φǫ = arctan
∆MK

∆ΓK/2
. (134)

More details of this calculation can be found in Chapter 1.6 of Ref. [34]. Nature chose ∆MK ≈
∆ΓK/2 by accident, so that φǫ in Eq. (14) is close to 45◦. The bottom line is that φǫ carries no
information on CP violation and that |ǫK | and AL involve the same fundamental CP -violating
quantity, which is φ. To extract φ from AL in Eq. (133) or from ǫK in Eq. (17) we use Eq. (42),
with 2|M12|/|Γ12| ≃ ∆MK/(∆ΓK/2) traded for tanφǫ:

AL =
1

2
sin(2φǫ)φ+ O(φ2)

ǫK ≃ 1

2
sin(φǫ)e

iφǫφ+ O(φ2) (135)

Using the experimental value

Aexp
L = (3.32 ± 0.06) × 10−3

gives

φ = (6.77 ± 0.12)× 10−3. (136)
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This number is in reasonable agreement with φ = 6.48 ± 0.03 found from ǫK with Eq. (135).
Next we relate φ to a constraint on (ρ, η): Specifying to the standard phase convention for the
CKM matrix (with VusV

∗
ud real and positive) we start from Eq. (38) to write

φ = arg

(
−M12

Γ12

)
≃ ImM12

|M12|
− arg(−Γ12) = 2

[
ImM12

∆M exp
K

+ ξK

]
(137)

where

2ξK ≡ − arg(−Γ12) ≃ − arg

(
−A0

A0

)
. (138)

In Eq. (137) I have used that the phases of M12 and −Γ12 are separately small in the adopted
phase convention and further traded |M12| for the experimental ∆MK/2. In Eq. (138) the
saturation of Γ12 by A∗

0 A0 in Eq. (131) has been used. Thus −ξK is just the CP-odd phase
in the decay K → (ππ)I=0. A recent analysis has estimated ξK ≈ −1.7 · 10−4 [35], so that
ξK contributes roughly −6% to the measured value of φ. The dominant term proportional to
ImM12 = Im 〈K|H |∆S|=2|K〉 involves the CKM factors

Im (VtsV
∗
td)

2 ≃ 2(Aλ2)4λ2 η (1 − ρ)

Im (2VtsV
∗
tdVcsV

∗
cd) ≃ −Im (VcsV

∗
cd)

2 ≃ 2(Aλ2)2λ2 η, (139)

where the lowest-order Wolfenstein expansion has been used. Inspecting the dependences of
the CKM factors on ρ and η we see that the experimental constraint from φ defines a hyperbola
in the (ρ, η) plane. Combining Eq. (139) with Eqs. (122) and (137), inserting the QCD factors
from Eq. (123) and the matrix element from Eq. (126) and finally using φ = 6.48 ± 0.03 from
ǫK this hyperbola reads

η =
1

B̂K

0.36

1.3 ± 0.1 − ρ
. (140)

The uncertainties in B̂K from Eq. (127) and from ηcc and ηct (reflected in 1.3 ± 0.1) inflict
errors of similar size on the η extracted from Eq. (140). The number 0.36 in the numerator is
calculated with |Vcb| = Aλ2 = 0.0412± 0.0011.

The neutral Kaon system is the only neutral meson system for which all three quantities
∆M , ∆Γ and φ are measured. It should be stressed that also the sign of ∆Γ/∆M is firmly
established. Measuring sign (∆Γ/∆M) is difficult for all meson-antimeson systems. In the
neutral Kaon system the measurement of ∆M and sign (∆Γ/∆M) uses Kshort regeneration: If
a Klong beam hits a nucleus in a target (the regenerator), strong inelastic scattering changes
the |Klong〉 state into a superposition of |Klong〉 and |Kshort〉 giving access to observables which
are sensitive to ∆M and the abovementioned sign. For details on these experimental aspects I
refer to [36].

Finally I discuss D−D mixing: Box diagrams in Fig. 1 with one or two internal b quarks are
highly CKM-suppressed. The dominant box diagrams with internal d and s quarks suffer from
a very efficient GIM suppression proportional to m4

s/m
2
c. This makes the diagrams sensitive

to very low scales and perturbative calculations of ∆MD, ∆ΓD and aDfs are put into doubt. In
the effective theory both M12 and Γ12 are dominated by the bilocal contribution with H |∆C|=1.
The only possible clear prediction is the qualitative statement that all these quantities are
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Figure 7: Gluonic penguin diagram with an internal top quark.

very small. Theoretical calculations usually quote numbers for the quantities x ≡ ∆MD/ΓD
and y ≡ ∆ΓD/(2ΓD). The theoretical predictions for |x|, |y| cover the range from zero to
|x|, |y| ∼ 0.01 and come without reliable error estimates. Therefore current experimental values
are compatible with the SM but may also be dominated by a new physics contribution. A
“smoking gun of new physics, however, would be the discovery of a non-zero CP asymmetry in
the D system.

3.4 Mixing-induced CP asymmetries

At the end of Sect. 2.3 we have learned that mixing-
induced CP asymmetries can provide clean informa-
tion on fundamental CP phases in the lagrangian.
These CP asymmetries involve the interference be-
tween mixing and decay amplitudes as depicted on
the right.

B
q/p−→ B

Afց ւAf

f

In this lecture we restrict the discussion to gold-plated modes which involve a CP eigenstate
fCP in the final state, cf. Eq. (10).4 In the Bd and Bs meson systems the mixing-induced
CP asymmetries are a real gold mine, because there are many decay modes satisfying the
condition for a golden decay mode as defined after Eq. (62). Prominent examples are the
decays Bs → J/ψφ and Bd → J/ψKshort, whose decay amplitudes essentially only involve
the CKM factor VcsV

∗
cb. To understand this first note that the decay proceeds at tree–level

by exchanging a W boson. There are also contributions involving an up, charm or top quark
loop, with attached gluons splitting into the charm-anticharm pair hadronising into the J/ψ
meson. Such diagrams are called penguin diagrams. A penguin diagram in the narrow sense only
involves one neutral vector boson (which can be a gluon, photon or Z boson). A gluonic penguin
diagram is depicted in Fig. 7. (Yet a J/ψ cannot be produced from a single gluon. One needs a
photon or three gluons at least.) In the context of mixing-induced CP asymmetries one often
speaks of penguin pollution, because the penguin diagrams may involve different CKM factors
than the tree diagram spoiling the golden-mode property. To estimate the penguin pollution
in Bs → J/ψφ and Bd → J/ψKshort first use the unitarity relation VtsV

∗
tb = −VcsV ∗

cb − VusV
∗
ub

to write

H |∆B|=1 = VcsV
∗
cbhc + V ∗

csVcbh
†
c + VusV

∗
ubhu + V ∗

usVubh
†
u. (141)

Here the last two terms are highly suppressed, since |V ∗
usVub| ∼ 0.03 |V ∗

csVcb|. Moreover, hu
has no tree contributions, but solely stems from penguin diagrams with up and top quarks.

4One can also identify gold-plated decays into non-CP eigenstates, important channels are e.g. Bs → D±
s K∓.
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Since these loop effects involve non-perturbative physics, it is difficult to quantify the loop
suppression. Still, the CKM suppression is efficient enough to render the modes gold-plated at
the level of a few percent. Since the CKM elements are factored out in Eq. (141), hc and hu
only contain Wilson coefficients, operators and real constants. Importantly, hu,c and h†u,c are
related by the CP transformation:

h†u,c = (CP )†hu,cCP. (142)

While I discuss Bs → J/ψφ and Bd → J/ψKshort here for definiteness, the results apply to
other gold-plated M → fCP modes as well, with obvious replacements for the CKM elements.
The underlying reason for the cancellation of hadronic uncertainties in gold-plated decays is
the CP invariance of QCD: While we cannot compute 〈fCP|hc|B〉5, we can relate this matrix
element to 〈fCP|h†c|B〉 through

〈fCP|h†u,c|B〉 = 〈fCP|(CP )†hu,cCP |B〉 = −ηCP〈fCP|hu,c|B〉, (143)

where I just used the CP transformations of Eqs. (9–10) and Eq. (142). We first apply this to
the decay mode Bs → J/ψφ. The final state consists of two vector mesons. By conservation of
angular momentum they can be in states with orbital angular momentum quantum numbers
l = 0, 1 or 2: The two spin-1 states of the vector mesons can be added to a state of angular
momentum 0, 1 or 2, which requires l = 0, 1 or 2 to give a J/ψφ state with zero total angular
momentum. The p-wave state with l = 1 is CP -odd and the other two states are CP -even,
owing to the parity quantum number (−1)l of their spatial wave function. Experimentally one
separates these states by an angular analysis [37, 38] of the data sample. This can be done
including the full time dependence of the decay, so that we can isolate the time-dependent CP
asymmetries in the different partial-wave channels. The most-populated state is the CP-even
l = 0 (i.e. s-wave) state. Writing fCP = (J/ψφ)l with ηCP = (−1)l we obtain for the amplitudes
AfCP and AfCP (see Eq. (12)):

AfCP

AfCP

≃ 〈fCP|H |∆B|=1|Bs〉
〈fCP|H |∆B|=1|Bs〉

=
V ∗
csVcb
VcsV ∗

cb

〈fCP|h†c|Bs〉
〈fCP|hc|Bs〉

= −ηCP
V ∗
csVcb
VcsV ∗

cb

(144)

Combining this result with Eqs. (47) and (13) we find

λfCP = ηCP
V ∗
tbVts
VtbV ∗

ts

V ∗
csVcb
VcsV ∗

cb

= ηCP e
2iβs . (145)

In the last step I have used the definition of βs in Eq. (77). With Eq. (145) we can calculate
the time-dependent CP asymmetry of Eq. (61). First we verify that our golden mode satisfies
|λfCP | = 1, so that Adir

CP in Eq. (62) vanishes. The other two quantites in Eq. (61) evaluate
with Eq. (145) to Amix

CP = −ηCP sin(2βs) and A∆Γ = −ηCP cos(2βs), so that (neglecting the tiny
O(a) term)

afCP(t) = ηCP
sin(2βs) sin(∆MBs

t)

cosh(∆ΓBs
t/2) − ηCP cos(2βs) sinh(∆ΓBs

t/2)
for fCP = (J/ψφ)l. (146)

5In flavour physics matrix elements like 〈f |H|∆B|=1|M〉 are always understood to include the strong inter-
action. This means that the fields are understood as interacting fields in the Heisenberg picture with respect to
the strong interaction.
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Figure 8: Interfering amplitudes which give rise to mixing-induced CP violation for the two
golden modes discussed in the text.

In the SM βs is small and a(J/ψφ)l
(t) is an ideal testing ground to find new physics [27, 38].

Next I discuss Bd → J/ψKshort. The final state has orbital angular momentum l = 1
balancing the spin of the J/ψ. Neglecting the small CP violation in K−K mixing we can
regard the Kshort as CP -even. The J/ψ is CP -even as well and the orbital angular momentum
contributes a factor of −1 to the total CP quantum number. Thus ηJ/ψKshort

= −1. From
Fig. 8 we observe a novel feature compared to Bs → J/ψφ. The interference of the Bd and
Bd decays involves K−K mixing: The Bd decay involves the K component of Kshort, while
the Bd decays into the K component of Kshort. Experimentally the Kshort is detected via a
pair of charged pions whose invariant mass equals MK , denoted here by (π+, π−)K . Therefore
we should identify the amplitudes AfCP=J/ψKshort

and AfCP=J/ψKshort
with A(Bd → J/ψK →

J/ψ(π+π−)K) and A(Bd → J/ψK → J/ψ(π+π−)K), respectively. Therefore

AJ/ψKshort

AJ/ψKshort

=
VcbV

∗
cs

V ∗
cbVcs

VusV
∗
ud

V ∗
usVud

, λJ/ψKshort
= −V

∗
tbVtd
VtbV ∗

td

VcbV
∗
cs

V ∗
cbVcs

VusV
∗
ud

V ∗
usVud

≃ −e−2iβ (147)

In the last step I have used the definition of β in Eq. (72) and neglected arg[−VcdV ∗
cs/(VudV

∗
us)] ≃

A2λ4η < 10−3, so that ImλJ/ψKshort
≃ sin(2β). We may further neglect ∆ΓBd

in Eq. (61) to
find the most famous time-dependent CP asymmetry,

aJ/ψKshort
(t) = sin(2β) sin(∆MBd

t). (148)

Finally I give a (very incomplete) list of other golden M → fCP decays. The decay Bs →
J/ψφ can be substituted for Bs → J/ψη(′), which does not require any angular decomposition.
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In a hadron collider experiment η’s and η′’s are hard to detect, but Bs → J/ψη(′) is interesting
for B factories running on the Υ(5S) resonance. While the modes discussed above provide
insight into the physics of B−B mixing, one can also use mixing-induced CP violation to probe
CP phases from new physics in loop-induced B decays such as Bd → φKshort [39]. This mode is
triggered by the quark decay b→ sss. The same transition in probed in Bs → φφ. Likewise new
physics in the b → sdd amplitude may reveal itself in Bs → KshortKshort. Studying Bs → ρ0φ
and Bs → π0φ will give insight into electroweak penguin amplitudes. Gold-plated D0 decays
are D0 → Kshortπ

0 and D0 → Kshortρ
0, which are penguin-free c→ sdu decays. A gold-plated

K decay is Klong → π0νν [40]. Here no meson-antimeson oscillations are present, but K−K
mixing nevertheless enters the process through the mass eigenstate Klong. The final state π0νν
is CP -even and the dominant contribution to the decay involves mixing-induced CP violation,
i.e. the decay amplitude is proportional to Imλf (see e.g. Ref [41]).

3.5 The unitarity triangle

Many measurements contribute to the global fit of the unitarity triangle defined in Eq. (70) and
depicted in Fig. 3. Conceptually it is useful to disentangle tree decays from FCNC processes:
Tree-level amplitudes are insensitive to new physics and therefore determine the true apex (ρ, η)
of the unitarity triangle. In principle one could determine the unitarity triangle in this way,
insert the result into the SM predictions of the FCNC processes and then assess the possible
impact of new physics on the latter. In practice, however, the tree constraints still suffer from
large uncertainties, while for example aJ/ψKshort

(t) in Eq. (148) and ∆MBd
/∆MBs

in Eq. (114)
determine sin(2β) and the side Rt (see Eq. (71)) fairly precisely. Therefore, for the time being,
it is best to combine all information into a global fit of the unitarity triangle.

From b→ cℓν decays |Vcb| ≃ Aλ2 is precisely determined. Therefore we realise from Eqs. (71)
and (76) that any measurement of |Vub| essentially fixes the side Ru of the triangle. |Vub| is
determined from (inclusive or exclusive) semileptonic b→ u decays and hadronic uncertainties
limit the accuracy of the extracted |Vub| to 8-10%. The theoretical methods used to determine
|Vcb| and |Vub| are briefly reviewed in Ref. [42]. The angle γ of the unitarity triangle is currently
measured in two ways from tree-level decays: First, the interference of the b→ cus and b→ ucs

amplitudes in B± → ( )

DK± decays is exploited [43]. Second, one measures mixing-induced CP
violation in Bd → ππ, Bd → ρπ or Bd → ρρ decays, which allows to find the angle α of the
desired triangle. These modes are not gold-plated and suffer from penguin pollution, which,
however, can be eliminated by means of an isospin analysis [44]. While the extracted result for
α is sensitive to new physics in Bd−Bd mixing, this possible effect can be eliminated if the
measured αexp and βexp are combined to give γexp = π−αexp−βexp. Combining the constraints
from |Vub|, γ and α with those from meson-antimeson mixing discussed in this lecture results
in the unitarity triangle shown in Fig. 9.

Suggestions for further reading

There are many good review articles on meson-antimeson mixing and flavour physics in general,
putting emphasis on different aspects of the field. A student interested in the theoretical
foundation of flavour physics, effective hamiltonians and higher-order calculations is referred
to the lecture in Ref. [48] and the review articles in Refs. [34, 49]. Most reviews and lectures
focus on CP violation and I recommend Refs. [47] and [50]. I have only briefly touched D−D
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Figure 9: Global fit to the unitarity triangle from the CKMFitter group [45]. A different
statistical approach is used by the UTFit group [46].

mixing, two review articles dedicated to D physics are cited in Ref. [51]. Lectures covering
both K and D physics can be found in Ref. [52]. A concise summary of the physics entering
CKM metrology can be found in Ref. [42], a more elaborate article on the subject is Ref. [53].
Standard textbooks on flavour physics are listed in Ref. [54].
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