
TTP-Number: TTP08-30

SFB-Number: SFB/CPP-08-51

Algorithm FIRE — Feynman Integral REduction

A.V. Smirnov1

Scientific Research Computing Center of Moscow State University
Institut für Theoretische Teilchenphysik - Universität Karlsruhe

Abstract

The recently developed algorithm FIRE performs the reduction of Feyn-
man integrals to master integrals. It is based on a number of strate-
gies, such as applying the Laporta algorithm, the s-bases algorithm,
region-bases and integrating explicitly over loop momenta when possi-
ble. Currently it is being used in complicated three-loop calculations.

1Supported by RFBR grant 08-02-01451-a and DFG through SBF/TR 9.



1 Introduction

In the framework of perturbation theory quantum field theoretical amplitudes are
written as sums of Feynman integrals that are constructed according to Feynman
rules. After a tensor reduction each Feynman graph generates various scalar Feyn-
man integrals with the same structure of the integrand but with various powers of
propagators (also called indices):

F (a1, . . . , an) =

∫

· · ·

∫

ddk1 . . .ddkh

Ea1

1 . . . Ean

n

. (1)

Here ki, i = 1, . . . , h, are loop momenta and the denominators Er are either quadratic
or linear with respect to the loop momenta pi = ki, i = 1, . . . , h or to the independent
external momenta ph+1 = q1, . . . , ph+N = qN of the graph. Irreducible polynomials in
the numerator can be represented as denominators raised to negative powers. Usual
prescriptions k2 = k2 + i0, etc. are implied and dimensional regularization [1] with
d = 4 − 2ε is assumed.

In today’s perturbative calculations, when one needs to evaluate millions of Feyn-
man integrals (1), a well-known strategy is to derive certain relations between Feyn-
man integrals of a given family without calculating them, and then to apply the latter
recurrently in order to find an algorithm that expresses any given Feynman integral
as a linear combination of some master integrals.

There are several types of commonly used relations, but the most important are
the the so-called integration by parts (IBP) relations [2]

∫

. . .

∫

ddk1d
dk2 . . .

∂

∂ki

(

pj

1

Ea1

1 . . . Ean

n

)

= 0 . (2)

The derivatives of the scalar products ki · kj and ki · qj can be expressed linearly in
terms of the factors Ei of the denominator, hence one obtains the IBP relations in
the following form:

∑

αiF (a1 + bi,1, . . . , an + bi,n) = 0 , (3)

where bi,j are some fixed integers and αi are polynomials in aj . Now one can substitute
all possible (a1, a2, . . . , an) on the left-hand sides of (3) and obtain a large number of
relations.

There are several recent attempts to make the reduction procedure systematic, in
particular, the so-called Laporta algorithm [3, 4] (There is a public version named
AIR which implements the algorithm on a computer [5]) and Baikov’s method (see
[6, 7] and chapter 6 of [8]). Another activity in this direction is connected to the use
of Gröbner bases [9]. The first variant of this approach was suggested in [10], where
IBP relations were reduced to differential equations. First attempts to use directly
the non-commutative Gröbner bases in the algebra generated by shift operators were
made in [11, 12].

1



We presented another approach based on Gröbner bases in [13]. More information
can be found in [14] and the algorithm constructing the s-bases has been described in
[15]. This algorithm called SBases is now made public and is available at http://www-
ttp.particle.uni-karlsruhe.de/∼asmirnov/. This paper provides the syntax to use it,
however its internal structure will not be discussed here.

This paper describes the algorithm FIRE, combining a number of ideas from
different existing algorithms. One of the important parts of the algorithm is the use
of s-bases (the original idea of FIRE three years ago was to construct the s-bases in
all sectors before the reduction). However, FIRE can also work in a “pure Laporta
mode”, i.e. without using the s-bases. To run FIRE in this mode one simply requires
to provide the IBPs, symmetries and boundary conditions. However, in practice this
part of FIRE is applied only to a small subset of integrals — the areas where most
of the indices are positive are usually done with the s-bases part and when there are
enough negative indices, an explicit integration can be performed.

Although the paper is devoted to the algorithm FIRE, one also requires some
other codes that are not a part of FIRE. All of them are available at http://www-
ttp.particle.uni-karlsruhe.de/∼asmirnov/, and the needed instructions for their usage
are provided. However, those projects will not be discussed in detail. Both FIRE and
those codes are distributed under the terms of GNU GPLv2.

FIRE can be downloaded directly from http://www-ttp.particle.uni-karlsruhe.de/
∼asmirnov/data/FIRE 3.0.0.m and a package with FIRE and supplementary codes
and binaries is available via http://www-ttp.particle.uni-karlsruhe.de/ ∼asmirnov/
data/FIRE.tar.gz.

To use all features of FIRE one requires the following codes: FIRE 3.0.0.m2 —
the algorithm FIRE itself, written in Wolfram Mathematica; IBP.m — a small code
for creating IBPs; the SBases 3.0.0.m — the code to construct the s-bases.

To take most out of the code, one should also use the QLink package (the package
also has its own page, http://qlink08.sourceforge.net/) that is used to access the
QDBM database for storing data on disk from Mathematica; and the small FLink
tool that allows to perform external evaluations by means of the Fermat program.
The usage of the code and the related packages will be discussed in section 5.

Let us start with explaining the idea of FIRE. The first step will consist in intro-
ducing an ordering on Feynman integrals.

2 The ordering

As it has been noted in [14], to define master integrals, or irreducible integrals, we
need to choose a certain priority between the points (a1, . . . , an), formally to intro-
duce a complete ordering on them. Moreover, we are intending to consider integrals
corresponding to different Feynman diagrams (to use integration over some loop mo-

2The first version was a private one, while the second version was shared with collaborators.

2



menta), therefore we actually need a global ordering on pairs (DN, (a1, . . . , an(DN))),
where DN is the diagram number.

We introduce such an ordering in three steps. First of all we enumerate Feynman
diagrams and say that all integrals corresponding to a diagram with a bigger number
are lower than the ones corresponding to a diagram with a smaller one (the ordering
will be denoted with the symbol ≺ and named as lower).

Now let us fix a Feynman diagram and introduce an ordering on integrals corre-
sponding to it. There are different ways to do that, but surely one is going to choose
something natural, so that the integrals corresponding to the minimal elements in
this ordering are easier to be calculated.

Let us realize that the Feynman integrals are simpler, from the analytic point
of view, if they have more non-positive indices. In fact, in numerous examples of
solving of IBP relations by hand, the natural goal was to reduce indices to zero
or negative values. Moreover, the reduction procedure is often stopped once one
arrives at integrals which are already sufficiently simple, in particular, when they
can be expressed analytically in terms of gamma functions for general dimension d.
Experience reflected in many papers leads to the natural idea to decompose the whole
region of the integer indices which we call sectors3.

Let us consider the set D with elements {d1, d2, . . . , dn} where all di are equal
to 1 or −1. The elements of this set are called directions. For any direction ν =
{d1, . . . , dn} we consider the region σν = {(a1, . . . , an) : (ai −1/2)di > 0} and call it a
sector. In other words, in a given sector, the indices corresponding to 1 are positive
and the ones corresponding to −1 are non-positive. Obviously the union of all sectors
contains all integer points in the n-dimensional vector space and the intersection of
any two sectors is an empty set. We will say that a direction {d1, . . . dn} is lower than
{d′

1, . . . d
′

n} if d1 ≤ d′

1, . . . , dn ≤ d′

n and they are not equal 4. The analogue definition
is also applied to the corresponding sectors.

Thus, the second natural step is to define that F (a1, . . . , an) ≻ F (a′

1, . . . , a
′

n) if
the sector of (a′

1, . . . , a
′

n) is lower than the sector of (a1, . . . , an) 5.
To define an ordering completely we introduce it in some way inside the sectors.

Let us fix a sector σν . Any point in this sector can be written as (a1, . . . , an) =
(p1+d1b1, . . . , pn+dnbn), where (p1, . . . , pn) = ((d1+1)/2, . . . , (dn+1)/2) is the corner
point of the sector, and all bi are non-negative. This sets a one-to-one correspondence
φ between points (a1, . . . , an) of the sector σν and (b1, . . . , bn) ∈ N

n. The latter set is
a semi-group (with respect to (b1, . . . , bn) + (b′1, . . . , b

′

n) = (b1 + b′1, . . . , bn + b′n)). We
will say that an ordering on N

n is linear if

3This decomposition is also standard within Laporta’s algorithm [3, 4]. Here one applies the
word topology which we tend to avoid because this is an example of a situation where a commonly
accepted mathematical term is used as a slang word to denote something else.

4This is not a complete ordering on directions. In practice one has to be able to compare all
directions, but the choice does not influence the reduction procedure much.

5This is a certain simplification of the ordering used in FIRE, to introduce it completely we have
to introduce the notion of regions and the way to compare them, that will be done in 8.

3



i) for any a ∈ N
n not equal to (0, . . . 0) one has a ≻ (0, . . . 0)

ii) for any a, b, c ∈ N
n one has a ≻ b if and only if a + c ≻ b + c.

An ordering on σν will be also named linear if the corresponding ordering on N
n

is linear (we say that φ(x) ≻ φ(y) if and only if x ≻ y). Now the third step is to fix
a linear ordering in every sector 6.

3 The algorithm

The idea of FIRE is that at every moment we store the so-called proper expressions
of Feynman integrals, meaning that the integral F (a1, . . . , an) is expressed as a linear
combination of integrals that are lower than F (a1, . . . , an).

There are different ways of producing proper expressions for Feynman integrals,
that we will discuss in the next section. Suppose now that there is a way to obtain a
proper expression for any integral. Then the main algorithm looks this way (where
Input is the set of integrals one wants to calculate):

FIRE

1. RequiredIntegrals=Input
2. While RequiredIntegrals is non-empty

3. Y = RequiredIntegrals[[1]]
4. Remove the first element of RequiredIntegrals
5. Obtain a proper expression for Y as a linear combination

of integrals; we will denote this set with S
6. Take the subset S ′ of S containing integrals

that do not yet have proper expressions
7. Unite RequiredIntegrals with S ′

8. EndOfWhile

9. Sort the list of all integrals encountered so that
the higher ones are at the beginning of the list.

10.For all elements Y of the list, starting from the end
11. Take the existing proper expression of Y by (X1, . . . , Xk)

and substitute into it the proper expressions of Xi

12.EndOfFor

13.Return the obtained expression for Input

In other words, we start from an integral, obtain a proper expression for it, look at
the integrals it was expressed by and so on. Since every integral is expressed in terms
of lower integrals, this procedure will stop at some point. Then it will be left to sort

6All known Laporta algorithms also use the linear orderings. Moreover, the set of linear orderings
is big enough, and only a small subset of those is used in practice.

4



the list and substitute everything backwards. It is worth noting that the length of
expressions does not grow on the substitutions cycle. Indeed, such a length is limited
by the number of irreducible integrals.

But all this was based on being capable of finding proper expressions for integrals
(step 5), preferably doing this fast. If one could construct those by a constant amount
of time, then one could expect to reduce any needed integral to master integrals. This
can be done by the use of s-bases. However, currently one can not construct those
for all sectors, so a combination of methods is needed.

4 Proper expressions

There are different sources of proper expressions. The power of FIRE is in using both
traditional sources and at the same time the s-bases technique.

The most commonly used source consists of applying the Laporta algorithm (see
[3, 4]) to derive proper expressions from IBP relations [2]. The basic idea of this
algorithm is to fix a sector and start generating IBP relations with different index
substitutions. Since the number of relations grows faster that the number of integrals,
at some point the linear system becomes overdetermined and can be solved.

It is important to note that if the Laporta algorithm is applied in a sector, then
we perform the so-called tail-masking [5] meaning that if an IBP also includes some
integrals from lower sectors then that part is masked and is not substituted anywhere.
Otherwise, the growth of those parts would not let the algorithm work.

Second, one can use the symmetries of the diagram. Typically they have the
following form:

F (a1, . . . , an) = (−1)d1a1+...dnanF (aσ(1), . . . , aσ(n)), (4)

where di are fixed and are equal to either one or zero, and σ is a permutation.
Next, one can use boundary conditions, i.e. the conditions of the following form:

F (a1, a2, . . . , an) = 0 when ai1 ≤ 0, . . . , aik ≤ 0 (5)

for some subset of indices ij. (In particular, we always have F (a1, a2, . . . , an) = 0, if
all ai are non-positive).

Furthermore, there are the so-called parity conditions, stating that Feynman in-
tegrals should be zero if the sum of some subset of indices is odd.

One more source of proper expressions is the usage of manually-inserted rules.
For example, one might consider several similar diagrams at the same time (which
happens quite often in practice) so that if some indices turn negative, the diagrams
become equal. This relation is provided into the code by inserting the rules manually.
One more important usage of rules is related to the region-bases and will be discussed
later.

5



Now, what can be called a bridge between Laporta and s-bases approaches, is the
direct use of IBP relations. There are too many IBP relations and surely there comes
the question of using them better. One of the ideas is to look at a given integral
and try to pick an IBP such that after substituting certain indices this integral X is
the highest one among the ones in the relation. In this case one would immediately
obtain a proper expression for X.

However, this is not applicable to all integrals. But still, one may consider a sector
and reduce the integrals while possible with this method. Afterwards one can apply
the Laporta algorithm in this sector, however the number of IBPs to be generated
becomes smaller.

The direct usage of IBPs can been replaced in the latest version of FIRE by
the usage of ideas of Lee [16]. Basically, in each sector one may find a single IBP
that generates proper expressions for “most” points in this sector. Accordingly, we
might generate less IBPs because the other IBPs are naturally represented as a linear
combination of the ones we generated. For details see Criterion 3 in [16].

FIRE would loose much of its functionality if it did not use the s-bases approach
to the reduction problem. One can say that an s-basis in a sector is a mechanism
of obtaining a proper expression for any (except for master integrals) integral in this
sector by a constant7 amount of time.

The idea of s-bases comes from the above-mentioned direct usage of IBPs. As it
has been said, the initial relations cannot be applied to construct proper expressions
directly for every integral. Therefore one might try to find a better set of relations S,
such that for any integral X (except for master integrals) one might find an element
of S and substitute some indices to obtain a proper expression for X.

To do this one first needs a language to work with relations before substituting
the indices. And that is the language of algebras of operators acting on the field of
functions. The algorithm aimed at constructing the s-bases is close to the Buchberger
algorithm. However, it does not always succeed, and it is a skill to find a good ordering
for it to work. The details on the construction of s-bases can be found in [15].

Finally, let us explain the usage of region-bases. Let us expand the set of directions
D up to the sets of numbers {r1, r2, . . . , rn} where all ri are equal to 1, −1 or 0. For
any ν = {r1, . . . , rn} we consider the set σν = {(a1, . . . , an) : (ai − 1/2)ri ≥ 0} and
call it a region. In other words, in a given region, the indices corresponding to 1 are
positive, the ones corresponding to −1 are non-positive and the ones corresponding
to 0 are arbitrary. With this definition we can turn back to the algorithm description.

Experience shows that s-bases are constructed easily if the number of non-positive
indices in a given sector is small. And if the number of non-positive indices is large,
there is usually a possibility to perform integration over some loop momentum explic-
itly in terms of gamma functions for general d. However, to derive the corresponding
explicit formulae, with multiple finite summations, for all necessary cases turns out

7Speaking formally, for each s-basis we can specify the maximum number of numerical operations
required to construct a proper expression with the use of this basis.

6



to be impractical.
In this situation, there is another alternative. Let us distinguish the propagators

(and irreducible numerators) involved in such an explicit integration formula. They
are associated with a subgraph Γ′ of the given graph Γ. Let us solve the IBP relations
for the corresponding subintegral in order to express any such subintegral in terms of
some master integrals. The coefficients in these reduction formulae depend not only
on d and given external parameters but also on the kinematic invariants of Γ which
are external for Γ′.

If the highest coefficients of the s-basis are monomials of those kinematic invari-
ants, the reduction for the Γ′ can be “raised” to the diagram Γ. It turns into a
reduction in a region, where the indices corresponding to Γ\Γ′ are arbitrary8.

After using this reduction procedure, it is sufficient to use explicit integration for-
mulae only for some boundary values of the indices (corresponding to master integrals
of Γ′). This replacement is very simple, without multiple summations.

Integrals which are obtained from initial integrals by an explicit integration over
a loop momentum in terms of gamma functions usually involve a propagator with
a regularization by an amount proportional to ǫ. FIRE is also applicable in such
situations.

In some cases one cannot perform an explicit integration because the diagram
contains a massive-massive or a massive-massless bubble. Still one can reduce the
indices on those lines to (1, 1) or (1, 0) by means of a region basis. Afterwards the
diagram might be mapped to a new diagram with one loop less and containing a
so-called heavy point corresponding to this bubble. The HeavyPoints setting will
instruct the code that there is an index whose value can be only 0 and 1. However,
the IBPs for such a diagram should be constructed manually.

Now what FIRE actually does when it needs to construct a proper expression for
a given integral, is

• checking if it is equal to zero by boundary conditions;

• checking if it is equal to zero by parity conditions;

• looking at its symmetry orbit checking if it is not minimal there;

• looking for manual rules to map this integral somewhere;

• constructing a proper expression using an s-basis if there is one in the corre-
sponding sector (or a region basis if this point lies in a region);

Surely, if FIRE manages to construct a proper expression for the integral by one
of the methods, it does not try the other ones for this integral but moves to other
integrals instead.

8The usage of regions obviously affects the definition of the ordering. See section 8 for more
details.

7



For the remaining integrals FIRE launches the Laporta algorithm in the highest
sector. It results in a number of new proper expressions and lower integrals that are
to be reduced, and the procedure is repeated.

5 Benchmarks

Up to the moment of the publication there is only one public Laporta algorithm
available, AIR [5] by Anastasiou and Lazopoulos. Although FIRE is not only a
Laporta algorithm, we had to compare the algorithms in different modes. To avoid
problems related to peculiarities of algorithms, we used a very simple example — the
massless on-shell box diagram also used as an example in [5].

p4p2 3

2 4

p3p1 1

Figure 1: The massless on-shell box diagram.

We cannot guarantee that we have found the optimal settings for AIR, however we
did a good effort to try different settings and followed the instructions from [5]. The
following table has the timing for AIR running in four modes (those modes are not any
internal modes of the algorithm, but the sets of settings we used). AIR1 stands for the
basic setting where one provides only the IBPs and boundary conditions. AIR2 uses
the masking of expressions: to use it one has to provide the list of master integrals.
AIR3 uses the masking of integral coefficients. In this mode AIR does not simplify
large coefficients during the reduction, but substitutes preset numerical values to
check whether they are zero. However, coefficients have to be simplified after the
reduction; we included this routine in the time measurement. AIR4 combines both
strategies.

We used FIRE also in four modes. FIRE1 is a pure Laporta mode. FIRE2 has
two options turned on — the LeeIdeas and DirectIBP. FIRE3 uses the symmetries
of the diagram. FIRE4 uses pre-constructed s-bases.

8



AIR1 AIR2 AIR3 AIR4 FIRE1 FIRE2 FIRE3 FIRE4
10 28 8 14 9 14 15 6 3
20 227 44 79 47 79 35 19 4
30 1068 166 285 202 131 80 42 8
40 3268 567 1098 624 259 166 88 16
50 14561 2117 2977 2280 672 478 254 34

The setup for both algorithms and the logs can be downloaded from http://www-
ttp.particle.uni-karlsruhe.de/∼asmirnov/data/FIRE-benchmarks.tar.gz

Although one cannot expect to construct the s-bases everywhere, it is always pos-
sible to achieve results much better than the pure Laporta mode by performing some
work before launching the evaluating: by constructing s-bases, region-bases, provid-
ing parity conditions, providing symmetries or inserting rules manually. Moreover,
the tests of this type are unnatural for FIRE since in practice one does not require
to reduce all integrals satisfying a given condition, but a much smaller set; FIRE is
optimized for involving less integrals if possible (especially with the use of s-bases).

To illustrate the potential of FIRE let us describe a problem where FIRE was
applied. It was used to calculate the fermionic contribution to the three-loop static
quark potential [17]. The Feynman diagrams corresponding to this problem had 12
indices each (11 propagators and 1 irreducible numerator). The reduction method
included the automatic construction of the s-bases, but a number of s-bases was
constructed manually (by means of trying different orderings). The region bases were
used as well — they allowed to reduce many cases to 2-loop problems (including those
with regularized lines) with 7 indices. The set of diagrams used during the reduction
included 18 3-loop diagrams and 16 2-loop diagrams9. The data file containing all
the information on the diagrams in an internal format had the size of 95 MB. We
had to reduce about 70 thousand integrals, and the task was split into 12 jobs.
Those jobs required maximally 2 days, 10 GB of RAM and 15GB on hard disk (with
DatabaseUsage=2, see section 6.4). The reduction included totally about 30 million
integrals involved.

6 Instructions

Let us now explain how to use the different computer programs.

6.1 IBP

The file IBP.m is written in Mathematica and is used to create IBPs. To use it, load
the file by Get["IBP.m"]. The following syntax is available:

9We count only the so-called “master-diagrams”.

9



• Syntax: PrepareIBP[];

Description: solves the system of linear equations obtained after differentiating.
But first one has to give values to the following variables:

– Syntax: Internal;

Description: lists the loop momenta;

Example: Internal={k,l};

– Syntax: External;

Description: lists the external momenta;

Example: External={};

– Syntax: Propagators;

Description: lists the propagators and irreducible numerators;

Example: Propagators={k2-mm,l2-mm,(k-l)2};

• Syntax: IBP[x,y]

Description: produces an IBP obtained after multiplying by y and differentiat-
ing by x;

Example: A 2-loop tadpole with two massive lines and one massless line:
Internal={k,l}; External={}; Propagators={k^2-mm,l^2-mm,(k-l)^2}.
The IBPs are produced by IBP[k,k], IBP[k,l], IBP[l,k] and IBP[l,l].

6.2 QLink

QLink [18] is a package that allows to use the QDBM database [19] from Mathematica.
The program is written mainly in C and uses the Mathlink technology. FIRE can
work either using QLink or not, but for heavy calculations it becomes reasonable to
use it, since otherwise memory problems might be encountered. The knowledge of
the QLink syntax is not required; it is used directly from FIRE.

6.3 FLink

FLink [20] is a tool that allows to perform external evaluations by means of the
Fermat program [21] which is extremely fast in working with polynomials. FIRE can
work either using FLink or not, but the usage of FLink can lead to a speed-up.

6.4 FIRE

FIRE 3.0.0.m is written in Mathematica and is loaded with Get["FIRE 3.0.0.m"].
Let us list its options and commands:

10



• Syntax: Prepare[];

Description: converts the information on a diagram into the internal format; to
use this command one has to give values to the following list of variables:

– Syntax: startinglist;

Description: specifies the list of IBPs written in terms of shift and mul-
tiplication operators. This is the same format which is provided by the
output of IBP.m. Obligatory variable;

Example: startinglist={IBP[k,k], IBP[k,l], IBP[l,k], IBP[l,l]};

– Syntax: RESTRICTIONS;

Description: defines the boundary conditions, the list of regions where the
integrals vanish has to be specified; it is important to specify all boundary
conditions, including symmetric ones; Obligatory variable;

Example: RESTRICTIONS={{-1,-1,0,0,0},{0,0,-1,-1,-1}};

– Syntax: SYMMETRIES, ODDSYMMETRIES or CONDITIONALSYMMETRIES;

Description: If all the symmetries preserve the sign, one can use the first
one and simply provide a list of possible permutations of indices (no need
to include the identical one). If the sign might be changed, one sets the
second one providing a list of pairs — a permutation and a set of 1s and
-1s {s1, . . . , sn}. In this case a point {a1, . . . , an}, being mapped to a
symmetric one, is multiplied by a product sa1

1 · . . . · san

n . A conditional
symmetry is a symmetry that should be applied only in case some if the
indices have a specified sign. In this case one provides a list of pairs — a
permutation and a region; it is important to specify all symmetries, not
only the generators;

Examples: 1) SYMMETRIES={{2,1,3,4,5},{1,2,4,3,5},{2,1,4,3,5}}
2) ODDSYMMETRIES={{{2,1,3,4,5},{1,1,1,1,-1}}}
3) CONDITIONALSYMMETRIES={{{2,1,3,4,5},{0,0,0,-1,0}}};

– Syntax: EVENRESTRICTIONS[list1]=list2;

Description: Specifies a parity condition; list1 can have numbers from
{−1, 0, 1, 2} and list2 can consist only of zeros and ones. The meaning of
such a statement is that if one takes a point {a1, . . . , an}, where the indices
corresponding to −1 in list1 are non-positive, the ones corresponding to 1
are positive, the ones corresponding to 0 are equal to zero and the remain-
ing ones are arbitrary, then the sum of indices corresponding to 1 in list2
should be even, otherwise the integral is equal to zero. Setting the parity
restrictions is non-obligatory; there might be multiple parity conditions for
a diagram;

Example: EVENRESTRICTIONS[{2,2,-1}]={1,1,0} means that if the last
index is non-positive, then the sum of the first two should be even;

11



– Syntax: RegLine and RegLineShift;

Description: Instructs the code that one of the diagram lines is regularized
(corresponding to a propagator with a non-integer index). The standard
shift is assumed to be (4−d)/2, but one can use any other value by setting
the RegLineShift variable;

Example: RegLine=5; RegLineShift=4-d;

– Syntax: HeavyPoints;

Description: The HeavyPoints option, if set, should list the indices cor-
responding to heavy points; see Section 4 for details;

Example: HeavyPoints={3};

Example: see section 7;

• Syntax: SaveStart[file without extension]

Description: Saves the information on a diagram on disk. Should be used after
successfully running the Prepare[] command;

Example: SaveStart["box"] writes to box.start;

• Syntax: LoadStart[file without extension,pn];

Description: Loads the information on a diagram from a file. A problem number
pn should be specified. It should be an integer from 1 to 999;

Example: LoadStart["box",1] loads from box.start;

• Syntax: LoadSBases[file without extension,pn];

Description: Loads an s-bases file. Those files are produced by the SBases code
(see section 6.5) and contain the same information as the start files plus a set
of s-bases constructed for some sectors or regions;

Example: LoadSBases["box",1] loads from box.sbases;

• Syntax: RULES[pn,region]:=G[pn,x ]:>...;

Description: The rules should be prescribed after loading a start file or an s-
bases file. A more convenient method is to put them in a file with the same
name as the start or s-bases file, but ending with .rules instead of .start or
.sbases. In this case the rules will be loaded automatically. Such a rule means
that if one takes a point in a region, then the right-hand side of the rule should
be applied to this point. It can be, for example, an expression of the form
G[pn,x ]:>If[x===y,something,G[pn,x]. This will be a rule for a special
value of x, in all other cases it will be ignored. If all the regions encountered in
the rules are sectors, there is nothing more required to make those rules work.
Otherwise one has to specify the list of all possible regions. The syntax will be
explained in section 8;

12



Example: RULES[1,{-1,1,0}]:=G[1,{x1,x2,x3}]:>G[1,{x2,x1,x3}] is an
alternative way of setting a symmetry between sectors;

• Syntax: CreateProblem[pn,n];

Description: A fast way to add a diagram where you are not going to use
anything but rules. n stands for the number of indices;

Example: CreateProblem[2,5];

• Syntax: Burn[];

Description: This command should be executed after loading or preparing all
start files, s-bases files and rules. The command performs some internal opti-
mizations and enumerations allowing to speed-up the algorithm. Burn[] can
work slowly at high dimensions (especially if one uses multiple diagrams);

• Syntax: SaveData[file];

Description: Saves the internal data produces by the Burn[] command in a
file. This file contains the information on all diagrams and some internal data
and should not be edited manually;

Example: SaveData["all.data"];

• Syntax: LoadData[file];

Description: Loads the data from the file. One does not require to run the
Burn[] command after loading the data, however no more diagrams can be
added at this moment;

Example: LoadData["all.data"];

• Syntax: F[pn,{a1, . . . , an}];

Description: The main command to evaluate the integral from diagram number
pn and indices {a1, . . . , an}. The answer comes as a linear combination of terms
looking like G[pn,{a′

1, . . . , a
′

n}]. This means completely the same as F , but it
is an internal convention, that G is something that is left unevaluated and F
makes the algorithm work;

Example: F[1,{2,3,0,-4}];

• Syntax: SaveTables[File(obligatory), IntegalList(non-obligatory),

SaveSymmetric(non-obligatory)];

Description: Saves the tables produced during the evaluation in a file. The
integral list can be missing, in this case all tables are saved. This option is not
recommended and can result in memory overflow; and in real problems one will
need only thousands of values, while there can be millions and more stored in
tables. The SaveSymmetric option is assumed to be False, but if it is True,

13



the tables for symmetric integrals are also saved. This might be useful and save
time if one did a long computation of integrals, that are not minimal in their
symmetry orbits, and might need the symmetrical integrals later;

Example: SaveTables["1.tables",{{1,{2,3,0,-4}},{1,{2,3,0,-3}}}];

• Syntax: LoadTables[File] or LoadTables[FileList];

Description: Loads the tables from a file or a list of files. Please keep in mind
that one cannot run this command twice without quitting the kernel or do a
calculation and then load some tables. This is done for the reason that same
integrals might have different numbers in different calculations and it is not easy
to combine them together. However, the LoadTables[FileList] syntax gives
all the functionality one needs. For example, if one has done an evaluation and
now wants to load some tables, one can first save the contents of the memory,
quit the kernel, then load the tables together;

Example: LoadTables["1.tables"];

• Syntax: ClearTables[];

Description: Clears the tables from memory.

• Syntax: EvaluateAndSave[ListOfIntegrals,FileForTables];

Description: The alternative mode “evaluate and save” to use FIRE. In this
mode the code performs a cleanup regularly that allows a real memory economy.
However, this cleanup makes impossible to work with the code after the evalu-
ation is over, so it is best to use this mode in batch jobs, where one loads the
initial data and gives a command to evaluate and save the integrals; afterwards
the job should be terminated;

Example: EvaluateAndSave[{{1,{2,3,0,-4}},{1,{2,3,0,-3}}},"1.tables"];

• Let us now list the options that FIRE has.

– UsingIBP: usually set to True, but if switched to False turns the Laporta
part off. Only possible if s-bases are available;

– DatabaseUsage: a number between 0 and 3, determines how heavily the
QDBM database should be used;

– QLinkPath: should be set properly to use the database, must point at the
QLink program;

– DataPath: should be set properly to use the database; the code creates up
to four directories with the path starting at DataPath, each of those being
a QDBM database;

– UsingFermat: a setting indicating whether the Fermat program is used for
substitutions;

14



– FLinkPath: should be set properly to use Fermat, must point at the FLink
program;

– FermatPath: should point at the Fermat program in order to use it;

– DirectIBP (available in version 3.0.1): if true, the code uses IBPs directly
as if it is an s-basis, see section 4;

– LeeIdeas: if true, the code omits some of the IBPs according to the ideas
of Lee [16].

6.5 SBases

SBases 3.0.0.m is the code used to construct the s-bases. It is written in Mathemat-
ica and is loaded simply with Get["SBases 3.0.0.m"]. The underlying algorithms
are not a subject of this paper, however, we will provide the usage instructions (still
all details of basis construction are worth a separate paper and cannot be covered
here).

To use the SBases, one needs to create a start file or load it the same was as it
has been done for the FIRE algorithm. Now one has the following syntax:

• : Syntax: BuildBasis[region,ordering];

Description: Tries to construct an s-basis in the specified region with the given
ordering. The ordering should be an n × n non-degenerate positive-definite
matrix. The usage of region-bases (in case when the region is different from a
sector) is a special subject that is discussed in Section 8; If the code succeeds
in constructing a basis, it prints the “Evaluation successful” message and a
summary on the expected master integrals. It is worth noting that finding a
proper ordering to construct a basis might be a difficult task and requires a
certain skill in complicated situations.

Example: BuildBasis[{1, 1, 1, 1},{{1, 1, 1, 1},{1, 1, 1, 0},{1, 1, 0, 0},{1, 0, 0,
0}}];

• : Syntax: BuildBasis[sector];

Description: Try to use the random ordering mode to try and construct a basis.
The random mode is supported only for sectors;

Example: BuildBasis[{1, 1, 1, 1}];

• : Syntax: Info[region];

Description: Provide the information on sectors contained in the specified re-
gion;

Example: Info[{0, 0, 0, -1}];

15



• : Syntax: Info[region,True];

Description: Same as Info[region] but with a listing of sectors;

Example: Info[{0, 0, 0, -1},True];

• : Syntax: BuildAll[region];

Description: launches an automatic attempt to build the s-bases in all sectors
contained in the specified region. The algorithm is bases on trying to find a sin-
gle element and an ordering such that this element produces proper expressions
for all integrals in the given sector. Hence this command might produce the
s-bases only in the sectors that have no master integrals. Anyway this might
be a good addition to the Laporta algorithm;

Example: BuildAll[{0, 0, 0, -1}];

• : Syntax: SaveSBases[file without extension];

Description: saves the s-bases to a file;

Example: SaveSBases["box"] writes to box.sbases.

• Syntax: F[{a1, . . . , an}];

Description: To verify how a basis works right after constructing it, one can
run the Burn[] command and F[{a1, . . . , an}] without specifying the problem
number;

Example: F[{2,3,0,-4}];

7 Examples

Our first example is a massless on-shell box diagram (Fig. 1) .

Input 1:

Get["FIRE 3.0.0.m"];

Get["IBP.m"];

Internal = {k};
External = {p1, p2, p4};
Propagators = {-k2, -(k + p1)

2, -(k + p1 + p2)
2, -(k + p1 + p2 + p4)

2};
PrepareIBP[];

reps = {p2
1 →0, p2

2 →0, p2
4 →0, p1p2 →s/2, p2p4 → t/2, p1p4 →-(s+t)/2}

startinglist = {IBP[k, k], IBP[k, p1], IBP[k, p2], IBP[k, p4]}/.reps;
RESTRICTIONS={{-1,-1,0,0},{0,-1,-1,0},{0,0,-1,-1},{-1,0,0,-1}};
SYMMETRIES = {{3, 2, 1, 4}, {1, 4, 3, 2}, {3, 4, 1, 2}};
Prepare[];

SaveStart["box"];

16



q2

q1
1

3

6

2

5 4

Figure 2: A diagram contributing to the 2-loop massless quark formfactor.

Burn[];

Output 1:

FIRE, version 3.0.0

UsingIBP: True

UsingFermat: False

Prepared

Dimension set to 4

Saving initial data

Now the code is ready to work with the box diagram in the Laporta mode. Simply
run something like F[{2, 2, 2, 2}] to get the answer.

To build the s-bases one has to load SBases 3.0.0.m and run the following com-
mands:

BuildBasis[{1,1,1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];
BuildBasis[{-1,1,1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];
BuildBasis[{1,-1,1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];
BuildBasis[{-1,1,-1,1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];
BuildBasis[{1,-1,1,-1},{{1,1,1,1},{1,1,1,0},{1,1,0,0},{1,0,0,0}}];

Afterwards the evaluation will go faster than in the Laporta mode.
A more complicated example: a diagram contributing to the two-loop massless

quark formfactor (Fig. 2).

Input 1:

Get["SBases 3.0.0.m"];

17



Get["IBP.m"];

Internal = {k, l};
External = {q1, q2};
Propagators = {(l + q1)

2, (k + q1)
2, (l - q2)

2,

l2, (k - l)2, (k - q2)
2, k2};

PrepareIBP[];

reps={q2
1 → 0, q2

2 → 0, q1 q2 → -QQ/2};
startinglist = {IBP[k, k], IBP[k, k-l], IBP[k, k+q1], IBP[k, k-q2],

IBP[l, l], IBP[l, l-k], IBP[l, l+q1], IBP[l, l-q2]}/.reps;
SYMMETRIES = {{3, 6, 1, 4, 5, 2, 7}};
RESTRICTIONS = {{-1, -1, 0, 0, 0, 0, 0}, {0, 0, -1, 0, 0, -1, 0},

{-1, 0, 0, 0, -1, 0, 0}, {0, -1, 0, 0, -1, 0, 0},
{0, 0, -1, 0, -1, 0, 0}, {0, 0, 0, 0, -1, -1, 0},
{0, -1, 0, 0, 0, -1, 0}, {-1, 0, -1, -1, 0, 0, 0}};

Prepare[];

Output 1:

SBases, version 3.0.0

UsingIBP: True

UsingFermat: False

Prepared

Dimension set to 7

In this example we demonstrate the automatic construction of s-bases. First of
all, let us list the sectors:

Input 2:

Info[{0, 0, 0, 0, 0, 0, -1}]

Output 2:

Sectors in the area :64

Non-trivial sectors in the area :17

Non-trivial sectors up to a symmetry in the area :11

Bases built in 0 sectors

Rules exist in 0 sectors

Nothing in 11 sectors

The last index is always non-positive for the reason that it corresponds to an
irreducible numerator. One can see that we have provided enough information for
the code to avoid considering trivial sectors and to identify symmetrical sectors. Now
let us construct most s-bases automatically:

18



Input 3:

BuildAll[{0, 0, 0, 0, 0, 0, -1}];

We skip the output. Let us repeat the information command. Now we will give
it with the True option forcing the code to produce more output:

Input 4:

Info[{0, 0, 0, 0, 0, 0, -1}, True]

Output 4:

Sectors in the area :64

Non-trivial sectors in the area :17

Non-trivial sectors up to a symmetry in the area :11

Bases built in 7 sectors

Rules exist in 0 sectors

Nothing in 4 sectors

2 additional minuses

{{-1,1,-1,1,1,1,-1}}
{{1,1,1,-1,-1,1,-1}}
{{-1,1,1,1,1,-1,-1},{1,-1,-1,1,1,1,-1}}
3 additional minuses

{{-1,1,1,-1,1,-1,-1},{1,-1,-1,-1,1,1,-1}}

Each of the lines in the sector listing stands for a set of symmetrical sectors,
where one has no s-bases constructed. The remaining sectors are likely to have
master integrals. One might try to construct the bases there manually.

8 Advanced topic: usage of regions

The regions were introduced into the code to be able to perform integration over
loop momenta explicitly. Consider a subset of indices I and the corresponding region
ν = {a1, . . . , an} where ai is nonzero if and only if i ∈ I. One tries to perform
a reduction to masters only considering the indices in I as shift operators and the
others as coefficients. Afterwards the indices in I can have only a finite number of
values (corresponding to master integrals of the subdiagram), so a rule can be created
mapping those integrals to a diagram with less indices and loops.

This approach affects both the basis construction and the reduction. However the
most important difference is that the global ordering has to be changed in a way. The
reason is that the sectors inside σν cannot be compared normally; instead, the active
indices (the ones in I) should be compared as normal, and the passive indices (the
remaining) can be changed in an arbitrary manner.

19



To make things even more complicated, we should keep in mind that there might
be different regions defined at the same time corresponding to different subdiagrams.
Therefore we had to change the definition of an ordering. After fixing a problem we
define the set of regions in this problem (the syntax is SBasisM[pn]). The order of
regions in this list is important: the regions going later are supposed to be lower.
Moreover, for each point A = {p1, . . . , pn} we consider the set of regions it lies in and
define the maximum region number (rA) as the maximum position number for those
regions inside the SBasisM[pn] (for a point that is contained in no regions we say
that rA = 0). Now we say that if rA < rB then B is lower than A and vice versa.
The points with rA = 0 are compared in the standard way. Now let us consider two
points with equal nonzero maximal region numbers. First of all, the active index
values are taken and are compared in the standard way. Next, if those coincide, we
have to consider the passive indices, which may be of any sign. Hence the sectors
corresponding to this subset of indices are considered and compared. Finally if the
points lie in the same subsector, they are compared with the use of the ordering.

This approach has the following implications: first, we have to define a unique
ordering for each region, and this ordering has to be specific: the active indices have
to be “more important” than the passive ones. Hence the ordering matrix should be
of a “block shape”: the first k = number of active indices rows can have non-zero
numbers only in the columns corresponding to the active indices, the following rows
can have non-zero numbers only in the columns corresponding to the passive ones.

Now, having chosen such an ordering, one can try to construct a region basis with
the BuildBasis[region,ordering] command.

The second implication is that one should not be able to reduce a point inside a
region to a point not lying in a region with a greater number. This could happen
if some of the active indices turned negative (from the positive value inside the re-
gion) and there were no region there. Hence we require that the points of that type
should either correspond to integrals vanishing by the boundary conditions, or lie
in a “parallel region” (with the same set of zeros in the definition) having a greater
number.

9 Perspectives

The beta-version of FIRE has been applied to a family of three-loop Feynman inte-
grals necessary for the analysis of decoupling of c-quark loops in b-quark HQET [22].
Furthermore, the algorithm itself has been used to calculate the fermionic contri-
bution to the three-loop static quark potential [17]. FIRE has also been used to
crosscheck some of the integrals in a paper [23] where four-loop vacuum integrals
have been evaluated.

The current version of the FIRE algorithm allows to perform difficult calculations
involving millions of integrals. One of the possible improvements in the future is to

20



reproduce some parts of the algorithm in C to increase the productivity and enable
the parallelization.

10 Acknowledgements

I am grateful to V.A. Smirnov for giving me this brilliant possibility to work on
the reduction of Feynman integrals, — without a person knowing physics well and
applying the code constantly on real examples (and finding numerous bugs) I would
never be able to result in a reasonably powerful code.

Special thanks to M. Steinhauser for the collaboration on evaluating the three-
loop static quark potential, for testing the code for a long time and for reading the
drafts of my paper.

I would like to thank M. Tentioukov for consulting me on the Laporta algorithm,
as well as on the help on coding in C for Linux and the gateToFermat library.

I would also like to thank K.G. Chetyrkin, A. Maier, P. Maierhoefer, P. Mar-
qaurd and A.G. Grozin for our joint work on different physical problems resulting in
additional functionality of FIRE covering the specifics of those problems.

And of course I would like to thank the Institute for Theoretical Particle Physics
of the University of Karlsruhe for the hospitality it offers and the powerful machines
required for running the code.

The work has been supported by RFBR grant 08-02-01451-a and DFG through
SBF/TR 9.

References

[1] G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields,
Nucl. Phys. B 44 (1972) 189;
C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of
dimensions as a regularizing Parameter, Nuovo Cim. 12 B (1972) 20.

[2] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calcu-
late beta functions in 4 loops, Nucl. Phys. B 192 (1981) 159.

[3] S. Laporta, High-precision calculation of multi-loop Feynman integrals by differ-
ence equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].

[4] T. Gehrmann and E. Remiddi, Two-loop master integrals for γ∗ → 3 jets: the
planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287];
T. Gehrmann and E. Remiddi, Two-loop master integrals for γ∗ → 3 jets: the
non-planar topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124].

[5] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order
perturbative calculations, JHEP 0407 (2004) 046 [hep-ph/0404258].

21



[6] P.A. Baikov, Explicit solutions of the 3–loop vacuum integral recurrence relations,
Phys. Lett. B 385 (1996) 404 [hep-ph/9603267];
Explicit solutions of the multi-loop integral recurrence relations and its applica-
tion, Nucl. Instrum. Methods A 389 (1997) 347 [hep-ph/9611449].
A practical criterion of irreducibility of multi–loop Feynman integrals, Phys. Lett.
B 634 (2006) 325 [hep-ph/0507053]

[7] V.A. Smirnov and M. Steinhauser, Solving recurrence relations for multi-loop
Feynman integrals, Nucl. Phys. B 672 (2003) 199 [hep-ph/0307088].

[8] V.A. Smirnov, Evaluating Feynman integrals, (STMP 211; Springer, Berlin, Hei-
delberg, 2004).

[9] B. Buchberger and F. Winkler (eds.) Gröbner Bases and Applications, (Cam-
bridge University Press, 1998).

[10] O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic
integrals, Acta Phys. Polon. B 29 (1998) 2655 [hep-ph/9812250]; Computation
of Gröbner bases for two-loop propagator type integrals, Nucl. Instrum. Meth. A

534 (2004) 293 [hep-ph/0403253].

[11] V.P. Gerdt, Gröbner bases in perturbative calculations, Nucl. Phys. B 135 (2004)
2320 [hep-ph/0501053].

[12] V.P. Gerdt and D. Robertz, A Maple package for computing Gröbner bases for
linear recurrence relations [cs.SC/0509070].

[13] A.V. Smirnov and V.A. Smirnov, Applying Gröbner bases to solve reduction
problems for Feynman integrals, JHEP 01 (2005) 001 [hep-lat/0509187].

[14] A.V. Smirnov, V.A. Smirnov, S-bases as a tool to solve reduction problems for
Feynman integrals, Nuclear Physics B - Proceedings Supplements 10 (2006) 001
[hep-ph/0606247];
A.V. Smirnov, V.A. Smirnov, Reduction of Feynman integrals to master integrals,
Proceedings of science, PoS(ACAT) (2007) 085 [arXiv:0707.3993]

[15] A.V. Smirnov An Algorithm to Construct Gröbner Bases for Solving Integration
by Parts Relations, JHEP 04 (2006) 026 [hep-ph/0606247]

[16] R.N.Lee, Group structure of the integration-by-part identities and its application
to the reduction of multiloop integrals, [arXiv:0804.3008]

[17] A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Applying Mellin-Barnes tech-
nique and Groebner bases to the three-loop static potential, Proceedings of science,
PoS(ACAT) (2007) 024 [arXiv:0805.1871]
A.V. Smirnov, V.A. Smirnov and M. Steinhauser Evaluating the three-loop quark
static potential, submitted to Nuclear Physics B (Proc. Suppl.), [arXiv:0807.0365]

22



[18] QLink — open-source program by A.V. Smirnov, http://qlink08.sourceforge.net

[19] QDBM — open-source program by M. Hirabayashi, http://qdbm.sourceforge.net

[20] FLink — open-source program by A.V. Smirnov and M. Tentioukov, can be
downloaded from http://www-ttp.particle.uni-karlsruhe.de/∼asmirnov/.

[21] Fermat — shareware program by R.H. Lewis, http://home.bway.net/lewis/

[22] A.G. Grozin, A.V. Smirnov and V.A. Smirnov, Decoupling of heavy quarks in
HQET, JHEP 0611 (2006) 022 [hep-ph/0609280].

[23] A. Maier, P. Maierhoefer, P. Marquard The second physical moment of the heavy
quark vector correlator at O(α3

s), [arXiv:0806.3405]

23


