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Abstract

New data for the total cross section σ(e+e− → hadrons) in the charm and bottom
threshold region are combined with an improved theoretical analysis, which includes
recent four-loop calculations, to determine the short distance MS charm and bottom
quark masses. A detailed discussion of the theoretical and experimental uncertain-
ties is presented. The final result for the MS-masses, mc(3 GeV) = 0.986(13) GeV
and mb(10 GeV) = 3.609(25) GeV, can be translated into mc(mc) = 1.286(13) GeV
and mb(mb) = 4.164(25) GeV. This analysis is consistent with but significantly more
precise than a similar previous study.
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1 Introduction

The strong coupling constant and the quark masses are the fundamental input parameters
of the theory of strong interaction. Quark masses are an essential input for the evaluation
of weak decay rates of heavy mesons and for quarkonium spectroscopy. Decay rates and
branching ratios of a light Higgs boson, suggested by electroweak precision measurements,
depend critically on the masses of the charm and bottom quarks, mc and mb. Last not
least, confronting the predictions for these masses with experiment is an important task
for all variants of Grand Unified Theories. To deduce the values in a consistent way from
different experimental investigations and with utmost precision is thus a must for current
phenomenology.

Let us recapitulate the main ingredients of the sum rule approach which will be used in
the following analysis. Originally the idea has been suggested for the analysis of the charm
quark mass by the ITEP group [1] long ago. Subsequently the method has been developed
further [2] and frequently applied to the bottom quark. Most of these later analyses
concentrated on using relatively high moments which are less sensitive to the continuum
contribution and exhibit a very strong quark mass dependence [3, 4, 5, 6, 7]. However,
this approach requires the proper treatment of the threshold, in part the resummation
of the higher order terms from the Coulombic binding and a definition of the quark
mass adopted to this situation like the potential- or 1S-mass [8, 9], which subsequently
has to be converted to the MS-mass. The low moments, in contrast, can be directly
expressed by the short-distance mass at a scale around 3 GeV and 10 GeV for charm and
bottom, respectively. The extrapolation to even higher scales, required for a number of
applications is therefore insensitive to the larger corrections which would appear in the
low energy region.

A detailed analysis of mc and mb, based on sum rules, has been performed several
years ago [10] (see also Ref. [11]) and lead to mc(mc) = 1.304(27) GeV and mb(mb) =
4.191(51) GeV. This is still one of the most precise results presently available. During the
past years new and more precise data for σ(e+e− → hadrons) have become available in the
low energy region, in particular for the parameters of the charmonium and bottomonium
resonances. Furthermore, the error in the strong coupling constant with its present value1

αs(MZ) = 0.1189 ± 0.0020 [12] (as compared to αs(MZ) = 0.118 ± 0.003 for the last
analysis) has been reduced. Last not least, the vacuum polarization induced by massive
quarks has recently been computed in four-loop approximation [14, 15]; more precisely:
its first derivative at q2 = 0 has been evaluated, which corresponds to the lowest moment
of the familiar R-ratio. In this computation all appearing integrals have been reduced
to a small set of master integrals with the help of the traditional integration-by-parts
method in combination with Laporta’s algorithm [16, 17]. All four-loop master integrals
have been calculated with high precision of 30 or more digits in Ref. [18] using the method
of difference equations [17] and subsequently in Ref. [19], where the method of ε-finite

1We adopt the central value from Ref. [12] but double the error such that the interval overlaps with
the central value given by the PDG [13].
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basis has been employed.2 A fresh look at the determination of the quark masses based
on these new developments is thus appropriate and will be presented below.

The outline of the paper is as follows: The basic assumptions of our approach are
presented in Section 2. In Section 3 we discuss in detail the evaluation of the background
and recall the theory input required for the quark mass determination. The measurements
in the charm threshold region are discussed and applied to the determination of the charm
quark mass in Section 4. Similar considerations are used in Section 5 to obtain the bottom
quark mass. Section 6 contains our conclusions.

2 Generalities

The extraction of mQ from low moments of the cross section σ(e+e− → QQ̄) exploits
its sharp rise close to the threshold for open charm and bottom production and the
important contributions from the narrow quarkonium resonances. At best the properties
of the lowest bottomonium state, Υ(1S), can be evaluated in perturbative QCD. In general
a differential description of the cross section close to threshold involves necessarily low
scales, of O(αsmQ) or O(α2

smQ) and even non-perturbative contributions, arising, e.g.,
from condensates 〈G2〉, will enter. In contrast, by evaluating the moments

Mn ≡
∫

ds

sn+1
RQ(s) , (1)

with low values of n, the long distance contributions are averaged out and Mn involves
short distance physics only, with a characteristic scale of order Ethreshold = 2mQ. Through
dispersion relations the moments are directly related to derivatives of the vacuum polar-
ization function at q2 = 0,

Mn =
12π2

n!

(

d

dq2

)n

ΠQ(q2)

∣

∣

∣

∣

∣

q2=0

, (2)

which can be evaluated in perturbative QCD. From dimensional considerations one obtains

mQ ∼ (Mn)
1

2n which implies

δmQ

mQ

∼ 1

2n

δMn

Mn

, (3)

for the relative error induced by the experimental uncertainties. (The theoretical and
parametric errors will be described below.) Given δR/R ≈ 1.5 − 3%, a precision close
to 10 MeV for mc and 20 MeV for mb seems within reach. An analysis at this level
obviously requires to control a variety of corrections, e.g., contributions from the non-
perturbative condensate in the case of mc. Furthermore, a careful definition of the heavy

2Some of the four-loop master integrals or particular orders in their ε-expansion have also been deter-
mined numerically or analytically in Refs. [20, 21, 22, 23, 24, 25, 26].
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Figure 1: Feynman diagrams contributing to R(s) at order α2
s. A secondary charm quark

pair is produced through gluon splitting.

quark production cross section per se is required. We will discuss this now in detail for
charm production, with the generalization to bottom production being obvious.

The narrow charmonium resonances J/Ψ, Ψ(2S) and the higher excitations will ob-
viously contribute to the moments. Open charm production exhibits a sharp rise, nearly
like a step function. Beyond the Ψ(3770)-resonance a few oscillations are observed which
quickly level out into a fairly flat energy dependence. Around and above approximately
5 GeV the cross section is well approximated by perturbative QCD and mass terms can
be considered as small corrections. The sensitivity to mQ is, therefore, concentrated on
the small region from J/Ψ up to approximately 5 GeV.

At first glance one might try to extract σ(e+e− → cc̄) by measuring the cross sec-
tion with tagged charmed hadrons, thus eliminating the contribution from light quarks.
However, such data are presently only available for selected narrow energy regions. Even
more important, this approach is also not tenable from the conceptual side. A sizeable
fraction of Ψ(3770) decays (not to speak of J/ψ or ψ′) proceeds to non-charmed final
states, nevertheless its total contribution should be attributed to the moments. On the
other hand, processes with “secondary” charm production arising from gluon splitting (cf.
Fig. 1(a)) should rather be assigned to the light quark cross section. Also cuts through
singlet diagrams (cf. Fig. 2) which first appear in order α3

s and where the fermion lines
represent light or heavy quarks, exhibit thresholds at q2 = 0, 4m2 and 16m2, and these
contributions cannot be attributed to a specific quark flavour. For the determination of
mQ we therefore rely on the measurement of the total cross section, which is calculated
through the absorptive parts of vacuum polarization diagrams. Various contributions to
the cross section, arising from different cuts through the same diagrams, will always be
treated together. For the moments Mn we only consider those contributions to Π(q2)
which are analytic for |q2| ≤ 4m2

Q and exhibit a cut starting at q2 = 4m2
Q. They result

from diagrams with one massive quark loop connecting both photon vertices and will
be denoted by ΠQ and RQ, respectively. The remaining diagrams with cuts starting at
q2 = 0 will be treated as “background”. This includes all diagrams with one light quark
loop connecting both photon vertices (including those with internal massive quark loops)
and all singlet diagrams. It will be shown below that the background defined in this way
exhibits a fairly flat behaviour across the threshold, despite the fact that individual cuts
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Figure 2: Sample singlet diagram contributing to Π(q2) which arises at order α3
s for the

first time. The cuts (indicated by the dashed lines; not all possible cuts are shown)
represent contributions to R(s).

with branching points at q2 = 4m2
Q exist.

In the remaining part of this Section we fix the notation and give precise definitions of
the quantities used in the paper. It is convenient to normalize the radiatively corrected
hadronic cross section relative to the point cross section and to define the ratio

R(s) =
σ(e+e− → hadrons)

σpt

, (4)

where σpt = 4πα2/(3s). As an inclusive quantity R(s) is conveniently obtained via the
optical theorem from the imaginary part of the polarization function of two vector currents
via

R(s) = 12π Im
[

Π(q2 = s+ iǫ)
]

, (5)

where Π(q2) is defined through

(

−q2gµν + qµqν
)

Π(q2) = i
∫

dx eiqx〈0|Tjµ(x)j†ν(0)|0〉 , (6)

with jµ being the electromagnetic current.
The perturbative expansion of R(s) can be written as

R(s) =
∑

i

∑

n

(

αs

π

)n

R
(n)
i +Rsing , (7)

where the summation is performed over all active quark flavours i. (The small singlet
contribution starts to contribute at order α3

s.) For a comprehensive compilation of the
individual pieces we refer to [27, 28, 29] where also explicit results are given. The full
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quark mass dependence is available up to order α2
s [30, 31]. For the non-singlet term R

(3)
i

the first three terms of the high-energy expansion are known [32].
The predictions forR(s) which are used to calculate the background and the continuum

term far above charm or bottom threshold, respectively, are based on Eq. (7) where the
up, down and strange quark masses are taken as massless. For the charm and bottom
quark the respective pole masses are chosen as input. If not stated otherwise we will use
the following parameters for the evaluation of the background

α(5)
s (MZ) = 0.1189 ± 0.002 ,

Mc = (1.65 ± 0.15) GeV ,

Mb = (4.75 ± 0.20) GeV , (8)

which cover the full range of all currently accepted results. In Eq. (8) Mc and Mb refer
to the pole masses.

At several places of our analysis the renormalization group functions and the matching
conditions for the masses and the strong coupling are needed in order to get relations
between different energy scales. The corresponding calculations are performed using the
package RunDec [33].

3 The background

As stated above, we distinguish three energy regions: First, the region of the narrow
resonances J/ψ and ψ′, second, the “charm threshold region” starting from the D-meson
threshold at 3.73 GeV up to approximately 5 GeV, where the cross section exhibits rapid
variations and, third, the continuum region where pQCD and local duality are expected
to give reliable predictions. In this last region the cross section is mainly sensitive to αs

and fairly insensitive to mc.
For the present analysis3 we use the data from the BES collaboration published in

2001 [34] and 2006 [35]. Whereas the older data cover the whole range from 2.0 GeV
to 4.8 GeV the newer ones provide a very precise measurement in the region around√
s ≈ 3770 GeV. In Fig. 3 the BES-results are shown together with the measurements from

the MD-1 [36] and CLEO [37] experiments between 4.8 GeV and 10.52 GeV. As is evident
from Fig. 3, pQCD with α(5)

s (MZ) = 0.1189 provides an excellent description of all recent
results. For example, the recent BES-value of Rexp = 2.141±0.025(stat.)±0.085(syst.), de-
termined in the interval [3.650GeV, 3.732GeV] is in excellent agreement with the theoreti-
cal prediction of R(3.700 GeV) = 2.161±0.017 and the same is true for Rexp(10.52 GeV) =
3.56 ± 0.01 ± 0.07 from CLEO [37] to be compared with R(10.52 GeV) = 3.548 ± 0.012.

Up to O(α2
s), the prediction for charm quark production incorporates the full quark

mass dependence. Starting from order α2
s also the charm quark mass dependence of

3We limit this analysis to the results from BES [34, 35], those from MD-1 [36] and from CLEO [37] with
systematic errors of typically 4.3% (BES [34]), 4% (MD-1 [36]) and 2% (CLEO [37]). Older measurements,
in particular those from SPEAR and DORIS, are consistent with the new results. However, with their
significantly larger errors they do not provide additional information.
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“secondary” charm production has to be taken into account. This includes diagrams
of the type in Fig. 1(a) as well as those from Fig. 1(b). In addition we include O(α3

s)
terms from the expansion in (M2

c /s)
n with n = 0, 1 and 2 [27, 32]. Last but not least

contributions from virtual c quarks (
√
s ≤ 3.73 GeV) and b quarks (

√
s ≤ 10.52 GeV)

are included. Since our formulae are expressed in terms of α(4)
s , the latter are suppressed

∼ (αs/π)2s/(4M2
b ) and decouple for s≪ 4M2

b . These are included in the forth column of
Tab. 1. Pure QED final state radiation is tiny and taken into account for completeness.
(For a related analysis at

√
s = 10.5 GeV see [38].)

Let us now discuss in detail the evaluation of the “background”. The results will be
used to extrapolate Ruds from the region below charm threshold up to 4.8 GeV. Here
we provide all formulae relevant for the charm threshold region; the modifications to the
bottom case are obvious.

Below 3.73 GeV only u, d and s quarks are produced. To allow for a smooth transition
through the threshold the effective number of flavours will be chosen to be nf = 4 and
virtual charm quark effects are taken into account (for a compilation of the relevant
formulae see Refs. [27, 28, 29]).

Specifically we define

Rbackground = Ruds +Ruds(cb) +Rsing +RQED , (9)

where we take for the purely light degrees of freedom

Ruds = 3
∑

i=u,d,s

Q2
i

[

1 +
αs

π
+ (1.640 − 2.250Lsµ)

(

αs

π

)2

+
(

−10.28 − 11.38Lsµ + 5.063L2
sµ

)

(

αs

π

)3
]

, (10)

with Lsµ = ln(s/µ2) and αs ≡ α(4)
s (µ). Contributions with virtual or secondary charmed

quarks appear first in order α2
s and in this order they are known in closed analytical

form [39, 40, 41]:

Ruds(cb) =
(

αs

π

)2 (

δR
(2)
uds(c) + δR

(2)
uds(b)

)

+
(

αs

π

)3

δR
(3)
uds(c) + . . . ,

δR
(2)
uds(c) = 3

∑

i=u,d,s

Q2
i

2

3

(

ρV (M2
c , s) +

1

4
ln
M2

c

µ2
+ Θ(s− 4M2

c )ρR(M2
c , s)

)

,

δR
(2)
uds(b) = 3

∑

i=u,d,s

Q2
i

2

3
ρV (M2

b , s) , (11)

where ρV and ρR can be found in Eqs. (E.15) and (E.16) of Ref. [29].4 The first three
expansion terms for small and large center-of-mass energy are given by

δR
(2)
uds(c)

∣

∣

∣

∣

∣

s≪4M2
c

= 3
∑

i=u,d,s

Q2
i

[

1

6
(Lsµ − LsMc

) +
s

M2
c

(0.06519 − 0.01481LsMc
)

4Note that in Ref. [29] ρV and ρR are combined such that nf = 3 for s < 4M2
c and nf = 4 for s > 4M2

c

whereas we always have nf = 4.
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Figure 3: R(s) for different energy intervals around the charm threshold region. The
solid line corresponds to the theoretical prediction, the uncertainties obtained from the
variation of the input parameters and of µ are indicated by the dashed curves. The inner
and outer error bars give the statistical and systematical uncertainty, respectively.

+

(

s

M2
c

)2

(−0.001231 + 0.0003968LsMc
) + . . .

]

, (12)
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δR
(2)
uds(c)

∣

∣

∣

∣

∣

s≫4M2
c

= 3
∑

i=u,d,s

Q2
i

[

− 0.1153 +
1

6
Lsµ +

(

M2
c

s

)2

(−0.4749 + LsMc
) + . . .

]

. (13)

δRuds(c) exhibits a logarithmic divergence for small s, which could be removed by matching
to a theory with three effective flavours. However, restricting ourselves to

√
s > 2 GeV

this logarithm is numerically not large and we can restrict ourselves to nf = 4. The
corresponding α3

s-terms with one or two internal heavy quark loops, which in Eq. (11)

is parameterized via δR
(3)
uds(c) are only known in approximative form in the regions s ≪

4M2
c [42, 43] and s≫ 4M2

c [32]:5

δR
(3)
uds(c)

∣

∣

∣

∣

∣

s≪4M2
c

= 3
∑

i=u,d,s

Q2
i

[

0.1528 + 1.005Lsµ − 0.7222L2
sµ + 0.6944LsµLsMc

− 1.005LsMc
+ 0.02778L2

sMc
+

s

M2
c

(−0.1568 − 0.1709Lsµ

+0.03210LsµLsMc
+ 0.1996LsMc

− 0.03724L2
sMc

)

+

(

s

M2
c

)2

(−0.007178 + 0.0009988Lsµ − 0.00006614LsµLsMc

−0.0002714LsMc
+ 0.0003830L2

sMc

)

+ . . .

]

, (14)

δR
(3)
uds(c)

∣

∣

∣

∣

∣

s≫4M2
c

= 3
∑

i=u,d,s

Q2
i

[

− 1.236 + 1.819Lsµ − 0.7222L2
sµ +

M2
c

s
(−6.476)

+

(

M2
c

s

)2
(

10.58 + 1.979Lsµ + 17.91LsMc
− 2L2

sMc

− 4.167LsµLsMc
) + . . .

]

, (15)

with LsMc
= ln(s/M2

c ).

In Fig. 4 the exact result for δR
(2)
uds(c) is compared with the approximations of Eqs. (12)

and (13). As can be seen, the approximations work excellent even fairly close to threshold,

above and below. The corresponding plot for δR
(3)
uds(c) is shown in Fig. 5. The dash-dotted

curve corresponds to the approximation in Eq. (15) and the dashed one to Eq. (14).
One can see a good agreement of the two approximations for

√
s>∼3.5 GeV. Since for√

s<∼3.5 GeV the lower dashed curve should be very close to the exact result we adopt
the result in Eq. (14) for the whole interval 2 GeV<∼

√
s<∼5 GeV. It is interesting to note

that the numerical effect of δR
(3)
uds(c) is comparable to the one of δR

(2)
uds(c). However, their

overall size is small, as can be seen in Tabs. 1 and 2 (see below).
The singlet contributions start at order α3

s and are fairly small. In the limit s≫ 4M2
c

5The corresponding result can easily be extracted from Eqs. (E.22), (E.25) and (E.26) of Ref. [29].
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Figure 4: δR
(2)
uds(c) for 2 GeV ≤ √

s ≤ 5 GeV. Both the exact result (solid line) and the

approximations including terms of order (s/M2
c )2 (dashed) and (M2

c /s)
2 (dash-dotted),

respectively, are shown and µ2 = s has been chosen.

Rsing can be cast into the form [29]

Rsing

∣

∣

∣

∣

∣

s≫4M2
c

= 3
(

αs

π

)3











∑

i=u,d,s,c

Qi





2

(−0.4132) +Qc

∑

i=u,d,s,c

Qi

(

M2
c

s

)2

17.81





 .

(16)

There are no quadratic mass terms in the singlet contribution. Both terms in Eq. (16)
are proportional to Q2

c , since the sum over the light quark charges happens to vanish.
The expansion for small

√
s has been considered in Refs. [42, 43] in the context of

the Z boson decay. It is straightforward to adopt Eq. (20) of [42] to our situation for
Rsing. It turns out that the lowest four expansion terms for s≪ 4M2

c are proportional to
Qu +Qd +Qs = 0. Thus the first non-zero contribution is proportional to Q2

c and arises
at order (s/M2

c )4. This term can be found in Refs. [44, 43]. However, its contribution is
numerically very small and can safely be neglected in our context.

Combining the information about the small and large energy region for Rsing one
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Figure 5: δR
(3)
uds(c) for 2 GeV ≤ √

s ≤ 5 GeV. The approximations including terms of

order (s/M2
c )2 (dashed) and (M2

c /s)
2 (dash-dotted), respectively, are shown and µ2 = s

has been chosen.

obtains that its numerical contribution is between −0.55(αs/π)3 and zero and can thus
be safely neglected. Similar arguments also hold for the bottom case.

The magnitude of the most important terms contributing to Rbackground is shown for
several characteristic energies in Tabs. 1 and 2 for both the charm and the bottom region.
In Tab. 3 they are compared to a few selected experimental results. Note that in contrast
to Rbackground a three-(four-)flavour theory has been used for the

√
s values below (above)

the charm threshold region. All theory predictions are given for the reference values
specified in Eq. (8).

The band in Fig. 3 and the uncertainty in Tab. 3 is obtained from the parametric
errors and the theoretical uncertainty, the latter obtained by varying the renormalization
scale between µ2 = s/4 and µ2 = 4s. These were added quadratically. The excellent
agreement between prediction and measurement in the continuum justifies to use the
background formula, normalized to data below threshold also in the region above to
obtain as remainder Rc which will be used for the quark mass determination.

In passing let us mention that the formulae in combination with the R measurement
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√
s (GeV) α(4)

s (
√
s) Ruds Ruds(cb) Rbackground

2.00 0.3075 2.2079 0.0000 2.2090
2.30 0.2882 2.1952 −0.0007 2.1956
2.60 0.2733 2.1853 −0.0011 2.1853
2.90 0.2614 2.1773 −0.0013 2.1771
3.20 0.2516 2.1706 −0.0014 2.1704
3.50 0.2433 2.1650 −0.0014 2.1647
3.80 0.2362 2.1601 −0.0014 2.1599
4.10 0.2300 2.1559 −0.0014 2.1557
4.40 0.2245 2.1522 −0.0013 2.1520
4.70 0.2197 2.1489 −0.0013 2.1487
5.00 0.2153 2.1459 −0.0012 2.1458

Table 1: Predictions for Rbackground in the charm region for selected energies, separated
into various pieces as defined in the text. For completeness we also give the values of
α(4)

s (
√
s).

√
s (GeV) α(5)

s (
√
s) Rudsc Rudsc(b) Rbackground

4.80 0.2186 3.7617 0.0010 3.7649
5.50 0.2102 3.6828 0.0003 3.6852
6.20 0.2034 3.6378 −0.0003 3.6396
6.90 0.1977 3.6092 −0.0006 3.6107
7.60 0.1928 3.5896 −0.0009 3.5908
8.30 0.1886 3.5753 −0.0011 3.5764
9.00 0.1849 3.5644 −0.0012 3.5654
9.70 0.1816 3.5559 −0.0013 3.5567

10.40 0.1786 3.5489 −0.0014 3.5497
11.10 0.1759 3.5431 −0.0014 3.5438
11.80 0.1735 3.5382 −0.0014 3.5389

Table 2: Predictions for Rbackground in the bottom region for selected energies, separated
into various pieces as defined in the text. For completeness we also give the values of
α(5)

s (
√
s).

between 3 GeV and 10.5 GeV can be used to determine a fairly precise value for αs, as
demonstrated in Ref. [10].
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√
s (GeV) 2.00 3.65 3.732 4.80 9.00 10.52
Rth(s) 2.209(91) 2.161(18) 2.160(17) 3.764(64) 3.564(17) 3.548(12)
Rexp(s) 2.18(7)(18) 2.157(35)(86) 2.156(86)(86) 3.66(14)(19) 3.62(7)(14) 3.56(1)(7)

Experiment BES [34] BES [35] BES [35] BES [34] MD-1 [36] CLEO [37]

Table 3: Comparison of the theory predictions for R(s) with the experimental results at
a few selected values for

√
s.

4 Charm quark mass determination from the thresh-

old region

Our determination of the charmed quark mass follows closely Ref. [10]. It is based on
the direct comparison of the theoretical and experimental evaluations of the contributions
to the derivatives of the polarization function Πc(q

2) (as defined in Eq. (6)), the former
evaluated in perturbative QCD, the latter through moments of the measured cross section
for charm production in electron-positron annihilation. In its domain of analyticity Πc(q

2)
can be cast into the form

Πc(q
2) = Q2

c

3

16π2

∑

n≥0

C̄nz
n , (17)

with Qc = 2/3 and z = q2/(4m2
c) where mc = mc(µ) is the MS charm quark mass at the

scale µ. The perturbative series for the coefficients C̄n in order α2
s was evaluated up to

n = 8 in Ref. [30, 31] (recently [45] even up to n = 30). The four-loop contributions to C̄0

and C̄1 were calculated in Ref. [14, 15]. The coefficients depend on αs and on the charm
quark mass through logarithms of the form lmc

≡ ln(m2
c(µ)/µ2). They can be written as

C̄n = C̄(0)
n +

αs(µ)

π

(

C̄(10)
n + C̄(11)

n lmc

)

+

(

αs(µ)

π

)2
(

C̄(20)
n + C̄(21)

n lmc
+ C̄(22)

n l2mc

)

+

(

αs(µ)

π

)3
(

C̄(30)
n + C̄(31)

n lmc
+ C̄(32)

n l2mc
+ C̄(33)

n l3mc

)

+ . . . . (18)

In Tab. 4 the coefficients C̄(ij)
n are given in numerical form up to n = 4. The terms C(30)

n

with n ≥ 2 are still unknown. To estimate the theoretical uncertainly from this source
we will use the following bounds on C(30)

n :

−6.0 ≤ C̄
(30)
2 ≤ 7.0 , −6.0 ≤ C̄

(30)
3 ≤ 5.2 , −6.0 ≤ C̄

(30)
4 ≤ 3.1 . (19)

The lower limit C(30)
n > −6.0 is based on the observation that for fixed order in αs the

absolute values of C(20)
n , C(10)

n and C(0)
n in only one case exhibit a slight increase, in general,

however, they tend to decrease with increasing n ≥ 1 quite markedly. The upper limit
is estimated from the dependence on the order in αs with n fixed, where we assume at
maximum a geometric increase and thus C(30)

n ≤ (C(20)
n )2/C(10)

n . In our numerical analysis
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n C̄
(0)
n C̄

(10)
n C̄

(11)
n C̄

(20)
n C̄

(21)
n C̄

(22)
n C̄

(30)
n C̄

(31)
n C̄

(32)
n C̄

(33)
n

1 1.0667 2.5547 2.1333 2.4967 3.3130 −0.0889 −5.6404 4.0669 0.9590 0.0642

2 0.4571 1.1096 1.8286 2.7770 5.1489 1.7524 — 6.7216 6.4916 −0.0974

3 0.2709 0.5194 1.6254 1.6388 4.7207 3.1831 — 7.5736 13.1654 1.9452

4 0.1847 0.2031 1.4776 0.7956 3.6440 4.3713 — 4.9487 17.4612 5.5856

Table 4: Coefficients of the photon polarization function in the MS scheme as defined in
Eqs. (17) and (18). nf = 4 has been adopted which is appropriate for the charm threshold.

we also include the two-loop QED corrections to Cn which can easily be obtained from
C(20)

n . It leads to a negative shift in mc by less than 2 MeV.
Tab. 4 and Eq. (19) essentially constitutes our theoretical input. We define the mo-

ments

Mn ≡ 12π2

n!

(

d

dq2

)n

Πc(q
2)

∣

∣

∣

∣

∣

q2=0

, (20)

which leads to

Mth
n =

9

4
Q2

c

(

1

4m2
c

)n

C̄n . (21)

As demonstrated in Ref. [10], high moments (n > 4) are less suited for the mass extraction.
The analysis will therefore be limited to n < 4 and the results for n = 4 will only be
presented for illustration.

With the help of the dispersion relation we establish the connection between the
polarization function and the experimentally accessible cross section Rc(s). In the MS
scheme

Πc(q
2) =

q2

12π2

∫

ds
Rc(s)

s(s− q2)
+Q2

c

3

16π2
C̄0 , (22)

which allows to determine the experimental moments in Eq. (1). Note, that the last term
in Eq. (22) which defines the renormalization scheme disappears after taking derivatives
with respect to q2. Equating Eqs. (21) and (1) leads to an expression from which the
charm quark mass can be obtained:

mc(µ) =
1

2

(

C̄n

Mexp
n

)1/(2n)

. (23)

Non-perturbative contributions to the moments have been evaluated in [1, 46] and,
in view of their smallness6, were neglected in Ref. [10]. With the further reduction of
theoretical and experimental uncertainties this approximation has to be reconsidered.

6This observation was confirmed in Ref. [47].
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J/Ψ Ψ(2S)
MΨ(GeV) 3.096916(11) 3.686093(34)
Γee(keV) 5.55(14) 2.48(6)

(α/α(MΨ))2 0.957785 0.95554

Table 5: Masses and electronic widths [13] of the narrow charmonium resonances and
effective electromagnetic coupling [49] at the appropriate scales.

The non-perturbative contribution from gluon condensate is given by [1, 46]

δMnp
n =

12π2Q2
c

(4m2
c)

(n+2)

〈

αs

π
G2
〉

an

(

1 +
αs

π
b̄n

)

, (24)

with

an = −2n + 2

15

Γ(4 + n)Γ
(

7
2

)

Γ(4)Γ
(

7
2

+ n
) ,

b̄n = bn − (2n+ 4)
(

4

3
− lmc

)

, (25)

and bn taken from Tab. 2 of Ref. [46]:

b1 =
135779

12960
, b2 =

1969

168
, b3 =

546421

42525
, b4 =

661687433

47628000
. (26)

For the numerical value of the condensate we take [48]

〈

αs

π
G2
〉

= 0.006 ± 0.012 (GeV)4 . (27)

For the evaluation of δMnp
n we use αs(3 GeV) = 0.254, µ = 3 GeV and mc = 1.3 GeV.

The result for δMnp
n are listed in Tab. 6 and will be subtracted from δMexp

n which enters
Eq. (23). Their impact on mc is still negligible, although the contribution to the error
starts to become relevant for n ≥ 3.

Let us now turn to the three different contributions which enter the right-hand side of
Eq. (1): the J/Ψ and Ψ′ resonances (Mres

n ), the charm threshold region between 2MD0
≈

3.73 GeV and
√
s1 = 4.8 GeV as measured by the BES experiment [34, 35] (Mthresh

n ), and
the continuum contribution above s1 (Mcont

n ).
The two narrow resonances are treated in the narrow width approximation

Rres(s) =
9πMRΓee

α2

(

α

α(s)

)2

δ(s−M2
R) , (28)

where we use the parameters listed in Tab. 5.
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In the charm threshold region (which includes Ψ(3770)) we have to identify the con-
tribution from the charm quark, i.e. we have to subtract the parts arising from the light
u, d and s quark. (As discussed in Section 3, charm production through secondary gluon
splitting is treated as part of the background, the same applies to the singlet contribu-
tion.) Technically this is done by determining a mean value for Rbackground (cf. Eq. (9))
from the comparison of theoretical predictions and the BES data between 2 GeV and
3.73 GeV and using the theoretically predicted energy dependence to extrapolate into the
region between 3.73 GeV and 4.8 GeV [50]. The mean value at the energy just below the
DD̄-threshold is given by

R̄background = Rth(s−)n− , (29)

with

n− =
∑

si≤s
−

Rexp(si)

Rth(si)

σ2
−

(

σi
Rth(s

−
)

Rth(si)

)2 ,

1

σ2
−

=
∑

si≤s
−

1
(

σi
Rth(s

−
)

Rth(si)

)2 , (30)

where the sums run over the s-values where experimental data, Rexp, are available. In
our case the upper bound is given by

√
s− = 3.73 GeV and Rth corresponds to the the-

oretical predictions from Rbackground(s). In a next step we multiply Rbackground(s) with
the normalization factor n− and subtract the result for each s-value in the energy region
[3.73 GeV, 4.8 GeV] from the data before the integration is performed. The final result for
the charm quark mass mc(3 GeV) changes by about −5 MeV if we do not take this renor-
malization into account. The effect of the energy dependence of Rbackground has practically
no effect on the final result (less than 1 MeV). The normalization factors n− = 1.038 for
the 2001 data [34] and n− = 0.991 for the 2006 data [35] can be considered as systematic
offset of the experimental R measurement, as determined from the measurement below
threshold and is determined under the assumption that the energy dependence of the true
R-ratio is indeed given by Rth. The magnitude of this factor is consistent with the quoted
systematic error of 4.3% [34] and of 4.0% (4.9%) outside (within) the Ψ(3770)-region [35]
which is kept in the subsequent analysis. The statistical error of n− is negligible.

In the continuum region above
√
s = 4.8 GeV data are sparse and imprecise. On the

other hand, pQCD provides reliable predictions for R(s), which is essentially due to the
knowledge of the complete mass dependence up to order α2

s [30] and the dominant terms
of order α3

s [32]. Thus in this region we will replace data by the theoretical prediction for
R(s) as discussed in the beginning of Section 3. As emphasized above, the cross section
is only weakly mc-dependent in this region.

In Tab. 6 we present the results for the moments separated according to the three
different contributions discussed above. The error of the resonance contribution is due to
the uncertainties of the input parameters. The error of the charm threshold contribution
is dominated by the correlated normalization error of approximately 4.0% to 4.9% of the
BES data.
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n Mres
n Mthresh

n Mcont
n Mexp

n Mnp
n

×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1) ×10(n−1)

1 0.1201(25) 0.0318(15) 0.0646(11) 0.2166(31) −0.0001(2)
2 0.1176(25) 0.0178(8) 0.0144(3) 0.1497(27) 0.0000(0)
3 0.1169(26) 0.0101(5) 0.0042(1) 0.1312(27) 0.0007(14)
4 0.1177(27) 0.0058(3) 0.0014(0) 0.1249(27) 0.0027(54)

Table 6: Experimental moments in (GeV)−2n as defined in Eq. (1) separated according
to the contributions from the narrow resonances, the charm threshold region and the
continuum region above

√
s = 4.8 GeV. In the last column the contribution from the

gluon condensate is shown.

n mc(3 GeV) exp αs µ np total δC̄(30)
n mc(mc)

1 0.986 0.009 0.009 0.002 0.001 0.013 — 1.286
2 0.979 0.006 0.014 0.005 0.000 0.016 0.006 1.280
3 0.982 0.005 0.014 0.007 0.002 0.016 0.010 1.282
4 1.012 0.003 0.008 0.030 0.007 0.032 0.016 1.309

Table 7: Results for mc(3 GeV) in GeV obtained from Eq. (23). The errors are from
experiment, αs, variation of µ and the condensate. The error from the yet unknown
four-loop term is kept separate. Last column: central values for mc(mc).

To estimate the error on Mcont
n we varied the input parameters as stated in Eq. (8) and

the renormalization scale µ between
√
s/2 and 2

√
s. The errors of the three contributions

are added quadratically. It is instructive to compare the composition of the experimental
error for the different moments. Generally speaking, it is dominated by the resonance
contribution, specifically by the 2.5% uncertainty in the leptonic widths of the J/Ψ and
Ψ′. Compared to the analysis of [10] the results are consistent. However, the present error
amounts to less than half of the previous one. Already for the previous analysis the im-
provement in the cross section measurement due to BES (from about 10–20 % systematic
error down to 4.3%) was important. This is particularly true for the moment n = 1. The
recent data for the Ψ(3770)-region have lead to further improvement. The parametric un-
certainties (from αs and Mc) and the residual µ-dependence which affect Mcont

n are small.
The higher moments (in fact already for n above two) are increasingly dominated by the
resonance contributions with their 2.5% uncertainty. The large uncertainty in 〈αs/πG

2〉
starts to matter for n ≥ 3.

We use the results of Tab. 6 together with Eqs. (23) and (24) in order to obtain in a first
step mc(3 GeV). The results are listed in Tab. 7 together with the total uncertainty and
its decomposition into the individual contributions from the experimental moments, the
variation of αs (cf. Eq. (8)), the renormalization scale7 µ = (3±1) GeV and the condensate

7Extending the range of µ to [1 GeV, 5 GeV] the scale uncertainty for n = 1 increases from 2 MeV to
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which are all added quadratically. To determine the µ-dependence, we evaluate Eq. (23)
at µ = 2 GeV and 4 GeV. Subsequently, using the renormalization group equation to
four-loop accuracy, we evolve the result for mc(µ) to the reference point µ = 3 GeV and
compare with the original value.

The first moment is available in four-loop approximation, and the corresponding µ-
dependence of the result is completely negligible. It is interesting to anticipate the corre-
sponding µ-dependence for the four-loop result also for the higher moments. The corre-
sponding results are displayed in Tab. 7. In the eighth column we show the effect of the
unknown coefficients C̄(30)

n (n ≥ 2) where assumptions were made on their respective nu-
merical growth as discussed above. For the extraction of mc(3 GeV) we assume C̄(30)

n = 0.
For δC̄(30)

n we take the larger of the deviations estimated in Eq. (19).
Let us compare the results displayed in Tab. 7 with those from [10]. For the moment

with n = 1 the main improvement originates from the new experimental results for the
electronic widths of the J/Ψ and Ψ′. Some additional improvement is due to the new BES-
data [35]. The four-loop term leads to a further reduction of the theoretical uncertainty
— in view of the dominant experimental uncertainties it only leads to consolidation of the
theoretical prediction. The error composition in the analysis based on n = 2 is similar,
as far as the experimental input is concerned. However, in this case the error from the
R-measurements is somewhat smaller, the error induced by the uncertainty in αs is larger.
Furthermore, the error from δC

(30)
2 has to be taken into account. Although at first glance

this error looks small, a check of the assumptions on C
(30)
2 would be extremely useful.

The analysis based on n = 3 leads to a result consistent with the one for n = 1
and n = 2. In this case, however, the theoretical uncertainty estimated through the µ
dependence starts to become important and the total error is therefore larger.

For the subtraction of the light-quark continuum we have assumed pQCD to be exact.
Deviations from this idealized situation have been estimated in Ref. [51]. Based on the-
oretical and phenomenological considerations it is assumed, that the oscillations of R(s)
around the perturbative result, which are observed in the low-energy region and reflect the
low-lying resonances, are damped by a power-law or an exponential factor. The following
two correction factors were suggested in [51]

f1 = 1 + 1.22 s−3/2 sin
(

2ρ
√
s− δ

)

, (31)

with ρ = 3 GeV−1, δ = 1.32 and, alternatively,

f2 = 1 − 1.24 exp
(

−2πsB

σ2Nc

)

sin
(

2πs

σ2
− 3.08

)

, (32)

with σ2 = 2 GeV2, B = 0.5 and Nc = 3. Potential effects from this modification are
estimated by including the factors f1 or f2 into the analysis.8 In the case of f1 we also
vary the phase δ between 0 and π.

3 MeV and the final uncertainty remains unaffected.
8We thank A. Vainshtein for raising this question.
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Figure 6: mc(3 GeV) for n = 1, 2, 3 and 4. For each value of n the results from left
to right correspond the inclusion of terms of order α0

s, α
1
s, α

2
s and α3

s in the coefficients
C̄n (cf. Eq. (18)). Note, that for n = 3 and n = 4 the central values and uncertainties
can not be determined with the help of Eq. (23) in those cases where only the two-loop
corrections of order αs are included into the coefficients C̄n as the equation cannot be
solved for mc(3 GeV).

The change in the contribution from the region 3.73 GeV ≤ √
s ≤ 4.8 GeV is about

1.2% for f1 and n = 1 and significantly smaller in the case of f2. The 1.2% translate to a
shift of −1 MeV for mc(3 GeV) which is completely negligible in the present context.

The results of Tab. 7 are also shown in Fig. 6 where the central value and the uncer-
tainties of mc(3 GeV) are plotted for n = 1, 2, 3 and 4. For each n the results are shown
for one- to four-loop theory input. For the O(α3

s) term the exact result is used for n = 1
whereas for n = 2, 3 and 4 we use C(30)

n = 0 and the error estimates discussed above. It
is nicely seen that the results for mc(3 GeV) further stabilize when going from three to
four loops. At the same time the uncertainty is considerably reduced. Furthermore, the
preference for the first three moments is clearly visible. Also the analysis for n = 2 and
n = 3 leads to small errors, even if we include to contribution from the yet uncalculated
δC(30)

n . We emphasize the remarkable consistency between the three results which we
consider as additional confirmation of our approach.

The result based on the moment with n = 1 is evidently least sensitive to non-
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mc(mc) (GeV) Method Reference
1.286 ± 0.013 low-moment sum rules, NNNLO this work
1.24 ± 0.07 fit to B decay distribution, α2

sβ0 [55]
1.224 ± 0.017 ± 0.054 fit to B decay data, α2

sβ0 [56]
1.29 ± 0.07 NNLO moments [47]
1.319 ± 0.028 lattice, quenched [57]
1.301 ± 0.034 lattice (ALPHA), quenched [58]
1.26 ± 0.04±0.12 lattice, quenched [59]
1.304 ± 0.027 low-moment sum rules, NNLO [10]
1.28 ± 0.05 QWG 2004 [60]
1.25 ± 0.09 PDG 2006 [13]

Table 8: Predictions for mc(mc). In the second column some keywords concerning the
used method are given (NNLO: next-to-next-to-leading order; NNNLO: next-to-next-to-
next-to-leading order).

perturbative contributions from condensates, to the Coulombic higher order effects, the
variation of µ and the parametric αs dependence. The results for n = 2 and n = 3 are
practically identical. Since the error in this case is somewhat larger, and furthermore
affected by the estimate for δC(30)

n , we adopt9

mc(3 GeV) = 0.986(13) GeV , (33)

as our final result. Transforming this to the scale-invariant mass mc(mc) [33] including
the four-loop coefficients of the renormalization group functions one finds

mc(mc) = 1.286(13) GeV . (34)

Our result agrees within the uncertainties with our last determination [10], but is consid-
erably more precise. Using the three-loop relation [52, 53, 54] between pole- and MS-mass
this corresponds to M (3−loop)

c = 1.666 GeV. We refrain from providing an uncertainty for
Mc since it is well known that the perturbative series between the MS and the pole mass
is badly behaved.

A comparison with a few selected determinations (published 2001 or later) is shown
in Tab. 8 and Fig. 7. Within their respective errors all results are consistent. Let us also
mention that a first investigation of the numerical effect of the four-loop results for the
moments has been performed in Ref. [15] where basically the analysis of Ref. [10] has been
adopted with updated parameters. The result of Ref. [15] reads mc(mc) = 1.295(15) GeV.
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Figure 7: Comparison of recent determinations of mc(mc) (see also Tab. 8).

n C̄
(0)
n C̄

(10)
n C̄

(11)
n C̄

(20)
n C̄

(21)
n C̄

(22)
n C̄

(30)
n C̄

(31)
n C̄

(32)
n C̄

(33)
n

1 1.0667 2.5547 2.1333 3.1590 3.4425 0.0889 −7.7624 −0.0599 1.5851 −0.0543

2 0.4571 1.1096 1.8286 3.2319 5.0798 1.9048 — 4.0100 7.2551 0.1058

3 0.2709 0.5194 1.6254 2.0677 4.5815 3.3185 — 5.6496 13.4967 2.3967

4 0.1847 0.2031 1.4776 1.2204 3.4726 4.4945 — 3.9381 17.2292 6.2423

Table 9: Coefficients of the photon polarization function in the MS scheme as defined in
Eqs. (17) and (18) for nf = 5.

5 The bottom quark mass

The same approach is also applicable to the determination of mb. The coefficients C̄n are
listed in Tab. 9. For the bounds on C(30)

n we assume

−8.0 ≤ C̄
(30)
2 ≤ 9.5 , −8.0 ≤ C̄

(30)
3 ≤ 8.3 , −8.0 ≤ C̄

(30)
4 ≤ 7.4 , (35)

where the same criteria as in the charm case have been applied. The coefficients in Tab. 9
determine the theoretical moments through Eq. (21) where Qc has to be replaced by

9Choosing as input value for the strong coupling [13] αs(MZ) = 0.1176±0.002 we obtain mc(3 GeV) =
0.991(13) GeV.
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Υ(1S) Υ(2S) Υ(3S) Υ(4S)
MΥ(GeV) 9.46030(26) 10.02326(31) 10.3552(5) 10.5794(12)
Γee(keV) 1.340(18) 0.612(11) 0.443(8) 0.272(29)

(α/α(MΥ))2 0.932069 0.93099 0.930811 0.930093

Table 10: Masses, electronic widths and effective electromagnetic couplings [49] at s = M2
Υ

for the narrow Υ-resonances.

Qb = −1/3. The non-perturbative terms from the gluon condensate are small and will be
neglected. We included the charm mass terms [61] of order (mc/mb)

2 to the moments C̄n

which induce a shift of about −1 MeV in the bottom quark mass.
The experimental results for the moments are listed in Tab. 11. The contribution from

the resonances include Υ(1S) up to Υ(4S). The values for the masses of the Υ resonances
and their electronic width have been taken from Ref. [13] and are listed in Tab. 10. The
errors from the three lowest Υ resonances have been combined linearly, since the PDG
values for the electronic widths are dominated by the measurement from CLEO [62].
The result is then combined in quadrature with the contribution from the Υ(4S) reso-
nance. The treatment of the bottom threshold region is similar to the one of the charm
region. Measurements of R from threshold up to 11.24 GeV have been performed by
the CLEO Collaboration more than 20 years ago [63], with a systematic error of 6%.
No radiative corrections were applied. The average value derived from the four data
points below threshold amounts to R̄ = 4.559 ± 0.034(stat.) which is 28% larger than
the prediction from pQCD. However, a later result of CLEO [37] at practically the same
energy, R(10.52 GeV) = 3.56 ± 0.01 ± 0.07, is significantly more precise and in perfect
agreement with theory. Applying a rescaling factor of 1/1.28 to the old CLEO data not
only enforces agreement between old and new CLEO data and pQCD in the region below
the Υ(4S), it leads, in addition, also to excellent agreement between theory and experi-
ment above threshold around 11.2 GeV where pQCD should be applicable also to bottom
production. Further support to our approach is provided by the CLEO measurement of
the cross section for bottom quark production at

√
s = 10.865 GeV which is given by

σb(
√
s = 10.865 GeV) = 0.301±0.002±0.039 nb [64]. The central value can be converted

to Rb(10.865 GeV) = 0.409. On the other hand, if one extracts Rb(10.865 GeV) from the
rescaled CLEO data from 1984 [63] one obtains Rb(10.865 GeV) = 0.425 which deviates
by less than 4% from the recent result [64]. In Fig. 8 the original and the rescaled data
from [63] is shown and compared to pQCD and data point from [37]. We thus extract the
threshold contribution to the moments from the interval 10.62 GeV ≤ √

s ≤ 11.24 GeV
by applying the rescaling factor to the data, subtract the “background” from u, d, s and
c quarks and attribute a systematic error of 10% to the result.

To evaluate the contributions to the moments from above 11.24 GeV, i.e. Mcont
n , we

use the prediction from pQCD for Rb(s).
The results for the moments are listed in Tab. 11, those for mb(10 GeV) and mb(mb)

in Tab. 12, where µ is varied between 5 GeV and 15 GeV. Just as in the charm case, a
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Figure 8: In the upper plot the data for R(s) are shown as published in Refs. [63] (circles)
and [37] (triangle). The black curves are the predictions from pQCD outside the resonance
region. In the lower plot the older data from [63] are rescaled by a factor 1/1.28.

remarkable consistency and stability is observed. For n = 1 the error is dominated by the
experimental input. For n = 3 we obtain ±0.010 from the experimental input, ±0.014
from αs and ±0.006 from the variation of µ.

The sensitivity to the inclusion of higher orders is displayed in Fig. 9. For the lowest
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n Mres,(1S−4S)
n Mthresh

n Mcont
n Mexp

n

×10(2n+1) ×10(2n+1) ×10(2n+1) ×10(2n+1)

1 1.394(23) 0.296(32) 2.911(18) 4.601(43)
2 1.459(23) 0.249(27) 1.173(11) 2.881(37)
3 1.538(24) 0.209(22) 0.624(7) 2.370(34)
4 1.630(25) 0.175(19) 0.372(5) 2.178(32)

Table 11: Moments for the bottom quark system.

n

m
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0 1 2 3 4 5

Figure 9: mb(10 GeV) for n = 1, 2, 3 and 4. For each value of n the results from left to
right correspond the inclusion of terms of order α0

s , α
1
s, α

2
s and α3

s in the coefficients C̄n

(cf. Eq. (18)). Note, the central value for n = 4 and the uncertainties for n = 3 and
n = 4 can not be determined in the case where only the two-loop corrections of order αs

are included into the coefficients C̄n as the corresponding equation cannot be solved for
mb(10 GeV).

moment the error is dominated by the experimental uncertainty — nevertheless the theory
error is reduced also in this case and the prediction stabilized. In general a significant
improvement and stabilization is observed.

The three results based on n = 1, 2 and 3 are of comparable precision. The relative
size of the contributions from the threshold and the continuum region decreases for the
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n mb(10 GeV) exp αs µ total δC̄(30)
n mb(mb)

1 3.593 0.020 0.007 0.002 0.021 — 4.149
2 3.609 0.014 0.012 0.003 0.019 0.006 4.164
3 3.618 0.010 0.014 0.006 0.019 0.008 4.173
4 3.631 0.008 0.015 0.021 0.027 0.012 4.185

Table 12: Results for mb(10 GeV) in GeV obtained from Eq. (23) (adopted to the bottom
quark case). The errors are from experiment, αs and the variation of µ. The error from
the yet unknown four-loop term is kept separate. Last column: central values are shown
for mb(mb).

moments n = 2 and 3. On the other hand, the theory uncertainty estimated from the
variation of µ and δC(30)

n is still acceptable. We therefore take the result from n = 2 (which
is roughly between the n = 1 and n = 3 values) and add the uncertainty from “total”
(cf. Tab. 12) and the one induced by δC(30)

n linearly which leads to an error estimate of
±25 MeV:10

mb(10 GeV) = 3.609(25) GeV , (36)

mb(mb) = 4.164(25) GeV . (37)

This result can also be converted to a pole mass [52, 53, 54] of M
(3−loop)
b = 4.800 GeV.

Again we do not display the additional error from the MS-pole-mass conversion, which is
significantly larger.

A comparison with a few selected determinations is shown in Tab. 13 and Fig. 10. In
Ref. [15] mb(mb) = 4.205(58) GeV was obtained on the bases of the four-loop result for
n = 1 and the phenomenological analysis of Ref. [10] with updated resonance parameters.

For various applications, either related to Z-boson decays or in connections to Grand
Unified Theories (GUTs) the value of mb(µ) at high scales is of interest. The result for
µ = MZ can be obtained in a straightforward way

mb(MZ) = 2.834 ± 0.019 ± 0.017 , (38)

where the first error originates from the combined error listed in Eq. (37), the second
error from δαs. (We do not quote a theory error at this point.)

In connection with Yukawa unification in Grand Unified Theories the valuemb(µ = mt)
in the nf = 6 theory may be of interest. Given Mt = 171.4 ± 2.1 [69], which we identify
within the present uncertainties with the pole mass, we find

mt(mt) = 161.8 ± 2.0 ± 0.2 , (39)

to three-loop accuracy [52, 53, 54]. (Again we do not specify a theory uncertainty. The
difference between the two- and three-loop result amounts to 426 MeV.) Evolving mb from

10Choosing as input value for the strong coupling [13] αs(MZ) = 0.1176±0.002 we obtain mb(10 GeV) =
3.616(25) GeV.
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mb(mb) (GeV) Method Reference
4.164 ± 0.025 low-moment sum rules, NNNLO this work
4.19 ± 0.06 Υ sum rules, NNLL (not complete) [7]
4.347 ± 0.048 lattice (ALPHA), quenched [65]
4.20 ± 0.04 fit to B decay distribution, α2

sβ0 [55]
4.25 ± 0.02 ± 0.11 lattice (UKQCD) [66]
4.33 ± 0.10 lattice, quenched [57]
4.346 ± 0.070 Υ(1S), NNNLO [67]
4.210 ± 0.090 ± 0.025 Υ(1S), NNLO [68]
4.191 ± 0.051 low-moment sum rules, NNLO [10]
4.17 ± 0.05 Υ sum rules, NNLO [6]
4.22 ± 0.05 QWG 2004 [60]
4.20 ± 0.07 PDG 2006 [13]

Table 13: Predictions for mb(mb). In the second column some keywords concerning the
used method are given (NNLO: next-to-next-to-leading order; NNNLO: next-to-next-to-
next-to-leading order; NNLL: next-to-next-to-leading-logarithmic order).

Kuehn, Steinhauser, Sturm 07

Pineda, Signer 06

Della Morte et al. 06

Buchmueller, Flaecher 05

Mc Neile, Michael, Thompson 04

deDivitiis et al. 03

Penin, Steinhauser 02

Pineda 01

Kuehn, Steinhauser 01

Hoang 00

QWG 2004

PDG 2006

mb(mb)

   low-moment sum rules, NNNLO

   Ψ sum rules, NNLL (not complete)

   lattice (ALPHA) quenched

   B decays αs
2β0

   lattice (UKCD)

   lattice quenched

   Ψ(1S), NNNLO

   Ψ(1S), NNLO

   low-moment sum rules, NNLO

   Ψ sum rules, NNLO

4.1 4.2 4.3 4.4 4.5 4.6 4.7

Figure 10: Comparison of recent determinations of mb(mb) (see also Tab. 13).
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µ = 10 GeV to mt(mt) and matching to the nf = 6 theory we find

mb(161.8) = 2.703 ± 0.018 ± 0.019 , (40)

where the first error reflects the combined error from Eq. (37) and the second one the
uncertainty due to αs. As stated above, the ratio

mt(mt)

mb(mt)
= 59.8 ± 1.3 , (41)

should be a useful input for Grand Unified Theories.

6 Conclusions

A new determination of the charm and bottom quark masses has been presented. It is
based on new experimental information on the electronic width of the narrow quarkonium
resonances and on the cross section for charm and bottom production in the respective
threshold region. In addition the analysis profits from the improved determination of αs

from a new analysis of recent experiments. Four-loop results for the moments lead to a
significant reduction of the theory error. The result can be directly expressed in terms
of running MS masses conveniently expressed at a scale of 3 GeV and 10 GeV, respec-
tively. Our final results mc(3 GeV) = 0.986(13) GeV and mb(10 GeV) = 3.609(25) GeV,
correspond to mc(mc) = 1.286(13) GeV and mb(mb) = 4.164(25) GeV. These values are
consistent with our previous determination [10] but considerably more precise. Let us
stress that, since mc is relatively small, mc(mc) shows a less stable behaviour against
higher order corrections. Thus we propose to use mc(3 GeV) as the better choice for
comparisons of the various methods. The evaluation of the running bottom mass at the
scale of mt leads to mt(mt)/mb(mt) = 59.8 ± 1.3, a result of interest for theories with
Yukawa unification. We want to mention that for the charm quark mass our analysis
constitutes the only one where NNNLO corrections from theory are incorporated. In the
case of the bottom quark there is only one further NNNLO analysis which is based on
the mass of the Υ(1S) system. However, the accuracy of this approach is strongly limited
due to large non-perturbative contributions.
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