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The experimental measurable R-ratio can be used to perform a precise determination of the charm- and bottom-

quark mass with the help of theoretical computable expansion coefficients of the vacuum polarization function.

The four-loop contributions in perturbative QCD to the first two expansion coefficients of the vacuum polarization

functions are presented.

1. Introduction

Due to the progress in the last years in calcula-
tional techniques a number of physical quantities
related to the computation of four-loop tadpole
diagrams have been evaluated recently. For ex-
ample, the matching condition for the strong cou-
pling constant αs at a heavy quark threshold has
been determined in ref. [1,2] to four-loop order in
the modified minimal subtraction scheme. This
requires the calculation of tadpole diagrams with
massive and massless propagators. The calcula-
tion of the four-loop β-function, which in contrast
requires the evaluation of completely massive tad-
pole integrals, has been performed previously in
ref. [3–5].
Moments of the cross section for electron-positron
annihilation into hadrons are also related to
tadpole diagrams. In this context the corre-
lator of two electromagnetic currents jµ(x) =
Ψ(x)γµΨ(x) of a heavy quark with mass mq is
important. It is connected to the vacuum polar-
ization function Π(q2) through:

(qµ qν − q2 gµν)Π(q2) = i

∫

dxeiqx〈0|Tjµ(x)jν(0)|0〉,

where qµ is the external momentum. On the one
hand the vacuum polarization function can be
linked to moments Mn with the help of disper-
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sion relations:

Mexp
n =

∫

ds
R(s)

sn+1
=

12π2

n!

(

d

dq2

)n

Π(q2)
∣

∣

q2=0
,(1)

Mexp
n depends on the experimental measurable

R-ratio R(s) = σ(e+e− → hadrons)/σ(e+e− →
µ+µ−). On the other hand the derivatives of the
vacuum polarization function can be calculated
in perturbative QCD. Let us define

Π(q2) =
3Q2

q

16π2

∑

n≥0

Cn zn , (2)

where z = q2/(4m2
q) and Qq is the electric charge

of the heavy quark. For quantities with a bar
renormalization is performed in the MS-scheme.
The expansion in equation (2) leads to tadpole
integrals. From the first and the dhigher deriva-
tives of the vacuum polarization function one can
extract the heavy quark mass by combining equa-
tion (1) and (2):

mq(µ) =
1

2

(

9Q2
q Cn

4Mexp
n

)1/(2 n)

. (3)

This method has been originally used to de-
termine the charm- and later the bottom-quark
mass [6,7]. Taking into account moments up
to three-loop order [8,9] precise results for both
quark masses have been obtained [10,11]. In view
of the present and foreseeable precision of experi-
mental data it is important to know the four-loop
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contributions [12] whose evaluation is subject of
this work.

This article is structured as follows: In sec-
tion 2 we outline the computation of the four-loop
contributions to the vacuum polarization function
in the low energy limit. We discuss the calcula-
tional methods, the determination of the master
integrals and finally present the result. In sec-
tion 3 we examine the phenomenological implica-
tions of this result and in section 4 we close with
a brief summary and conclusions.

2. Outline of the calculation

Calculation methods

In a first step about 700 Feynman diagrams
were generated using the program QGRAF [13] and
classified according to the number of inserted
closed fermion loops. In four-loop approxima-
tion one thus obtains three classes of diagrams
for the considered problem, shown on fig. 1(a)-(c).
Within this work we consider the calculation of
the non-singlet diagrams at four-loop order. Con-
tributions of singlet type diagrams like the repre-
sentative in fig. 1(d) were studied in ref. [14–16].

(a) (b)

(c) (d)

Figure 1. The first diagram (a) belongs to the n2
f -

contribution, the second diagram (b) to the n1
f -

contribution, the third diagram (c) contributes to
the n0

f -contribution, which does not involve any
insertion of closed fermion loops. The fourth di-
agram (d) is a singlet-diagram. The wavy lines
denote the external vector current and the spiral
lines represent gluons.

The multitude of tadpole integrals have been re-
duced to a small set of master integrals with the
traditional Integration-by-parts (IBP) method in
combination with the Laporta-algorithm [17,18].
The generation and solution of the linear system
of equations has been implemented in a program
[19] based on FORM[20–22] and FERMAT[23], which
is used to simplify the rational functions in the
space time dimension d. Furthermore, all sym-
metries of the Feynman integrals have been taken
into account in an automated way. This helps to
reduce the number of initial IBP-identities, which
need to be generated and solved. Likewise, the
consideration of symmetries is important to keep
the size of the integral tables containing the so-
lutions of the linear system of equations under
control. All integrals can thus be mapped on a
small set of 13 master integrals.

Master integrals

The 13 master integrals have been evaluated in
ref. [24] with the help of the difference equation
method [18,17,25]. Independently they have been
calculated in ref. [26] by constructing an ε-finite
basis of master integrals.
While solving the system of IBP-identities a divi-
sion by ε = (4− d)/2 can appear. The coefficient
functions of the master integrals can contain so
called spurious poles. Master integrals with spu-
rious poles in their coefficient functions need to
be evaluated deeper in the ε-expansion. In gen-
eral each additional order in ε in which a master
integral has to be evaluated is increasingly cum-
bersome, in particular, if numerical methods need
to be applied. For this reason it is useful to select
a set of master integrals whose coefficient func-
tions are finite in the limit ε → 0 by exploiting
the freedom in the choice of the master integrals.
This defines an ε-finite basis. Trivial master inte-
grals, which can be completely expressed in terms
of Γ-function, are not considered in this construc-
tion. These are shown in fig. 2.
For the remaining nine master integrals an ε-
finite basis has been constructed in ref. [26]. The
master integrals are shown in fig. 3. The ε-
finite master integrals have been calculated semi-
numerically in ref. [26] with the help of Padé ap-
proximations [27–30]. The result is in perfect
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agreement with ref. [24].

T63 T53

T51
T41

Figure 2. Master integrals which are known com-
pletely analytically. The solid (dashed) lines de-
note massive (massless) propagators.
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71
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54

Figure 3. Master integrals being member of the ε-
finite basis. The solid (dashed) lines denote mas-
sive (massless) propagators. One master integral

(T f
54) has a scalar product.

Result

If ones inserts the results for the master inte-
grals into the solution provided by the Laporat-
algorithm and performs renormalization in the
MS-scheme one obtains for the first two expan-
sion coefficients C0 and C1 (adopting the renor-
malization scale µ = m):

C0 = +
(αs

π

)

1.44444444444444

+
(αs

π

)2
(

1.72492329642573

+0.37139917695473nl

)

+
(αs

π

)3
(

− 1.95490692882665

−1.18600984426309nl

+0.02570664656045n2
l

)

, (4)

C1 = +1.06666666666667

+
(αs

π

)

2.55473251028807

+
(αs

π

)2
(

0.50988169828765

+0.66227709190672nl

)

+
(αs

π

)3
(

1.87882284654395

−2.79472185790743nl

+0.09610140043295n2
l

)

. (5)

The symbol nl denotes the number of light active
quarks which are considered as massless. The n2

f -

contribution[31] and n1
f -contribution are known

completely analytically. The terms proportional
to αk

s nk−1
l are known to all orders k in [32]. The

results for C0 and C1 in the analytical form are
given in [12].

3. Phenomenological implications

In this section we discuss the influence of the
newly computed correction on the charm- and
bottom-quark masses as well as its effect on the
(unphysical) renormalization scale dependence of
the scale-invariant quark masses. In our analysis
we will closely follow [10]. In particular, we will
take from [10] the value of the first “experimen-
tal” moment as defined in eq. (1). The latest ex-
perimental information on R(s) which appeared
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after publication of [10] will be taken into account
in a future study.

Using relation (3) for the first moment at three-
and four-loop approximations one can assess the
influence of the new four-loop order on the values
of the charm- and bottom-quark mass.

Let us first summarize the current status of the
charm- and bottom-quark masses as obtained in
[10] from the first moment evaluated to order α2

s:

mc(3GeV) = 1.027 ± 0.002GeV, (6)

mb(10GeV) = 3.665 ± 0.005GeV. (7)

Note that here and below we display only the un-
certainties coming from the variation of the renor-
malization scale µ in the region µ = 10 ± 5GeV
for the bottom-quark and µ = 3 ± 1GeV for the
charm-quark respectively. The transformation of
the results to the scale invariant mass mq(mq)
using the three-loop coefficients of the renormal-
ization group (RG) functions leads to

mc(mc) = 1.304 ± 0.002GeV, (8)

mb(mb) = 4.205 ± 0.005GeV. (9)

The inclusion of the four-loop contribution to
the function C1 leads for the case of the charm-
quark to the following modification of eq. (6):

mc(3GeV) = 1.023+0.00005
−0.0005 GeV, (10)

which corresponds to the following result for the
scale-invariant mass:

mc(mc) = 1.310+0.00004
−0.0004 GeV. (11)

Note that for both equations above we have
used the evolution with four-loop accuracy as re-
quired by the self-consistency considerations. If
we would use the RG equation only with the
three-loop accuracy this would not only lead to
somewhat larger errors (by around 20-25%) but
also to a significantly smaller value of mc(mc) =
1.300GeV .

For the case of the bottom-quark our results
read:

mb(10GeV) = 3.665+0.0002
−0.0011 GeV, (12)

which corresponds to the following result for the
scale-invariant mass:

mb(mb) = 4.210+0.0002
−0.0011 GeV. (13)

Again the equations above correspond to the use
of the four-loop evolution equation. Due to the
larger scale involved the use of the three-loop run-
ning would move the mb(mb) by about five MeV
down (leaving it practically unchanged from the
result of [10] within our accuracy) and again
would lead to a slight increase of the error.

4. Summary and conclusion

The calculation of the expansion coefficients of
the vacuum polarization function allows a precise
determination of the charm- and bottom-quark
masses. The reduction to master integrals of
the first two expansion coefficients C0 and C1

at four-loop order in perturbative QCD has been
completed using the IBP-method in combination
with the Laporta-Algorithm. Furthermore all
master integrals were obtained with two indepen-
dent methods: the difference equation method
and the method of the ε-finite basis. The influ-
ence of the new four-loop contributions on the
values of the charm- and bottom-quark mass is
small: the newly computed four-loop term moves
up the charm-quark mass by 6 MeV and the
bottom-quark mass by 5 MeV.
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Note added.

The results of our calculations as expressed in eq.
(5) have been confirmed in the work [33], where
also a strong reduction of the theoretical error due
to the unphysical scale dependence of mq(mq) has
been found. Furthermore, the complete four-loop
QCD correction to the electroweak ρ parameter
were calculated in [34] and confirmed in [35] (note
that the calculation of the so-called singlet con-
tribution to the full result was performed in an
earlier work [36]).
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