Recent Results on Four-loop Tadpoles
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The experimental measurable R-ratio can be used to perform a precise determination of the charm- and bottom-
quark mass with the help of theoretical computable expansion coefficients of the vacuum polarization function.
The four-loop contributions in perturbative QCD to the first two expansion coefficients of the vacuum polarization

functions are presented.

1. Introduction

Due to the progress in the last years in calcula-

tional techniques a number of physical quantities
related to the computation of four-loop tadpole
diagrams have been evaluated recently. For ex-
ample, the matching condition for the strong cou-
pling constant a; at a heavy quark threshold has
been determined in ref. [1,2] to four-loop order in
the modified minimal subtraction scheme. This
requires the calculation of tadpole diagrams with
massive and massless propagators. The calcula-
tion of the four-loop B-function, which in contrast
requires the evaluation of completely massive tad-
pole integrals, has been performed previously in
ref. [3-5].
Moments of the cross section for electron-positron
annihilation into hadrons are also related to
tadpole diagrams. In this context the corre-
lator of two electromagnetic currents j*(x) =
W(z)y*¥(x) of a heavy quark with mass m, is
important. It is connected to the vacuum polar-
ization function I1(¢?) through:
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where g* is the external momentum. On the one
hand the vacuum polarization function can be
linked to moments M, with the help of disper-
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sion relations:
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MS¥P depends on the experimental measurable
R-ratio R(s) = o(eTe” — hadrons)/o(ete” —
T 117). On the other hand the derivatives of the
vacuum polarization function can be calculated
in perturbative QCD. Let us define

T(?) = 22250, an, )
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where z = ¢%/(4 mg) and @ is the electric charge
of the heavy quark. For quantities with a bar
renormalization is performed in the MS-scheme.
The expansion in equation (2) leads to tadpole
integrals. From the first and the dhigher deriva-
tives of the vacuum polarization function one can
extract the heavy quark mass by combining equa-
tion (1) and (2):
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This method has been originally used to de-
termine the charm- and later the bottom-quark
mass [6,7]. Taking into account moments up
to three-loop order [8,9] precise results for both
quark masses have been obtained [10,11]. In view
of the present and foreseeable precision of experi-
mental data it is important to know the four-loop



contributions [12] whose evaluation is subject of
this work.

This article is structured as follows: In sec-
tion 2 we outline the computation of the four-loop
contributions to the vacuum polarization function
in the low energy limit. We discuss the calcula-
tional methods, the determination of the master
integrals and finally present the result. In sec-
tion 3 we examine the phenomenological implica-
tions of this result and in section 4 we close with
a brief summary and conclusions.

2. Outline of the calculation

Calculation methods

In a first step about 700 Feynman diagrams
were generated using the program QGRAF [13] and
classified according to the number of inserted
closed fermion loops. In four-loop approxima-
tion one thus obtains three classes of diagrams
for the considered problem, shown on fig. 1(a)-(c).
Within this work we consider the calculation of
the non-singlet diagrams at four-loop order. Con-
tributions of singlet type diagrams like the repre-
sentative in fig. 1(d) were studied in ref. [14-16].

Figure 1. The first diagram (a) belongs to the n?c—
contribution, the second diagram (b) to the n}--
contribution, the third diagram (c) contributes to
the n%-contribution, which does not involve any
insertion of closed fermion loops. The fourth di-
agram (d) is a singlet-diagram. The wavy lines
denote the external vector current and the spiral
lines represent gluons.
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The multitude of tadpole integrals have been re-
duced to a small set of master integrals with the
traditional Integration-by-parts (IBP) method in
combination with the Laporta-algorithm [17,18].
The generation and solution of the linear system
of equations has been implemented in a program
[19] based on FORM[20-22] and FERMAT[23], which
is used to simplify the rational functions in the
space time dimension d. Furthermore, all sym-
metries of the Feynman integrals have been taken
into account in an automated way. This helps to
reduce the number of initial IBP-identities, which
need to be generated and solved. Likewise, the
consideration of symmetries is important to keep
the size of the integral tables containing the so-
lutions of the linear system of equations under
control. All integrals can thus be mapped on a
small set of 13 master integrals.

Master integrals

The 13 master integrals have been evaluated in
ref. [24] with the help of the difference equation
method [18,17,25]. Independently they have been
calculated in ref. [26] by constructing an e-finite
basis of master integrals.
While solving the system of IBP-identities a divi-
sion by € = (4 — d)/2 can appear. The coefficient
functions of the master integrals can contain so
called spurious poles. Master integrals with spu-
rious poles in their coefficient functions need to
be evaluated deeper in the e-expansion. In gen-
eral each additional order in € in which a master
integral has to be evaluated is increasingly cum-
bersome, in particular, if numerical methods need
to be applied. For this reason it is useful to select
a set of master integrals whose coefficient func-
tions are finite in the limit ¢ — 0 by exploiting
the freedom in the choice of the master integrals.
This defines an e-finite basis. Trivial master inte-
grals, which can be completely expressed in terms
of I'-function, are not considered in this construc-
tion. These are shown in fig. 2.
For the remaining nine master integrals an e-
finite basis has been constructed in ref. [26]. The
master integrals are shown in fig. 3. The e-
finite master integrals have been calculated semi-
numerically in ref. [26] with the help of Padé ap-
proximations [27-30]. The result is in perfect
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agreement with ref. [24].
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Figure 2. Master integrals which are known com-
pletely analytically. The solid (dashed) lines de-
note massive (massless) propagators.
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Figure 3. Master integrals being member of the e-
finite basis. The solid (dashed) lines denote mas-
sive (massless) propagators. One master integral
(T,) has a scalar product.

Result

If ones inserts the results for the master inte-
grals into the solution provided by the Laporat-
algorithm and performs renormalization in the
MS-scheme one obtains for the first two expan-
sion coefficients Cy and C; (adopting the renor-
malization scale p = m):
Co = + (%> 1.44444444444444
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The symbol n; denotes the number of light active
quarks which are considered as massless. The nfc—
contribution[31] and nj-contribution are known
completely analytically. The terms proportional
to o nf~! are known to all orders k in [32]. The
results for Cy and C; in the analytical form are

given in [12].

3. Phenomenological implications

In this section we discuss the influence of the
newly computed correction on the charm- and
bottom-quark masses as well as its effect on the
(unphysical) renormalization scale dependence of
the scale-invariant quark masses. In our analysis
we will closely follow [10]. In particular, we will
take from [10] the value of the first “experimen-
tal” moment as defined in eq. (1). The latest ex-
perimental information on R(s) which appeared



after publication of [10] will be taken into account
in a future study.

Using relation (3) for the first moment at three-
and four-loop approximations one can assess the
influence of the new four-loop order on the values
of the charm- and bottom-quark mass.

Let us first summarize the current status of the
charm- and bottom-quark masses as obtained in
[10] from the first moment evaluated to order o2

M(3GeV) = 1.027+0.002GeV, (6)
(10 GeV) 3.665 + 0.005 GeV. (7)

Note that here and below we display only the un-
certainties coming from the variation of the renor-
malization scale p in the region p = 10 + 5 GeV
for the bottom-quark and pu = 3 &1 GeV for the
charm-quark respectively. The transformation of
the results to the scale invariant mass mm4(7,)
using the three-loop coefficients of the renormal-
ization group (RG) functions leads to

mc<mc) = 1.304 £ 0.002 GeV, (8)

The inclusion of the four-loop contribution to
the function C'; leads for the case of the charm-
quark to the following modification of eq. (6):

Me(3CeV) = 1.02315-0009% GeV, (10)

which corresponds to the following result for the
scale-invariant mass:

me(m,) = 1.31070 5009 GeV. (11)

Note that for both equations above we have
used the evolution with four-loop accuracy as re-
quired by the self-consistency considerations. If
we would use the RG equation only with the
three-loop accuracy this would not only lead to
somewhat larger errors (by around 20-25%) but
also to a significantly smaller value of m.(m.) =
1.300 GeV .

For the case of the bottom-quark our results
read:

mp (10 GeV) = 3.665150007 GeV, (12)

which corresponds to the following result for the
scale-invariant mass:

(M) = 4.21070 5002 GeV. (13)
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Again the equations above correspond to the use
of the four-loop evolution equation. Due to the
larger scale involved the use of the three-loop run-
ning would move the 7, (7;) by about five MeV
down (leaving it practically unchanged from the
result of [10] within our accuracy) and again
would lead to a slight increase of the error.

4. Summary and conclusion

The calculation of the expansion coefficients of
the vacuum polarization function allows a precise
determination of the charm- and bottom-quark
masses. The reduction to master integrals of
the first two expansion coefficients Cy and C,
at four-loop order in perturbative QCD has been
completed using the IBP-method in combination
with the Laporta-Algorithm. Furthermore all
master integrals were obtained with two indepen-
dent methods: the difference equation method
and the method of the e-finite basis. The influ-
ence of the new four-loop contributions on the
values of the charm- and bottom-quark mass is
small: the newly computed four-loop term moves
up the charm-quark mass by 6 MeV and the
bottom-quark mass by 5 MeV.
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Note added.

The results of our calculations as expressed in eq.
(5) have been confirmed in the work [33], where
also a strong reduction of the theoretical error due
to the unphysical scale dependence of 7, (77,) has
been found. Furthermore, the complete four-loop
QCD correction to the electroweak p parameter
were calculated in [34] and confirmed in [35] (note
that the calculation of the so-called singlet con-
tribution to the full result was performed in an
earlier work [36]).
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