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Abstract

The vacuum polarization due to a virtual heavy quark pair and specif-

ically the coefficients of its Taylor expansion in the external momen-

tum are closely related to moments of the cross section for quark-

antiquark pair production in electron-positron annihilation. Relating

measurement and theoretically calculated Taylor coefficients, an ac-

curate value for charm- and bottom-quark mass can be derived, once

corrections from perturbative QCD are sufficiently well under con-

trol. Up to three-loop order these have been evaluated previously. We

now present a subset of four-loop contributions to the lowest two mo-

ments, namely those from diagrams which involve two internal loops

from massive and massless fermions coupled to virtual gluons, hence

of order α3
sn

2
f . The calculation demonstrates the applicability of La-

porta’s algorithm to four-loop vacuum diagrams with both massive

and massless propagators and should be considered a first step to-

wards the full evaluation of the order α3
s contribution.

1On leave from Institute for Nuclear Research of the Russian Academy of Sciences, Moscow,

117312, Russia.



1 Introduction

The correlator of two currents is central for many theoretical and phenomeno-

logical investigations in Quantum Field Theory (QFT) (for a detailed review

see e.g. [1, 2]). Important physical observables like the cross section of electron-

positron annihilation into hadrons and the decay rate of the Z-boson are related

to the vector and axial-vector current correlators. Total decay rates of CP even

or CP odd Higgs bosons can be obtained by considering the scalar and pseudo-

scalar current densities, respectively. Some of these studies require to calculate

the correlator for arbitrary momentum q2. For many applications, however, the

knowledge of a few derivatives at q2 = 0 is sufficient.

Two-point correlators have been studied in great detail in the framework of

perturbative QFT. Indeed, due to the simple kinematics (only one external mo-

mentum) even multi-loop calculations can be performed analytically. The results

for all physically interesting diagonal and non-diagonal correlators (vector, axial-

vector, scalar and pseudo-scalar) are available up to order α2
s, taking into account

the full quark mass and momentum dependence [3, 4, 5].

The determination of the heavy quark masses with the help of QCD sum rules

requires the detailed knowledge of the heavy quark correlators. In fact, as noted in

ref. [6], the precise determination of the charm- and bottom-quark masses would

be further improved by including four-loop corrections, hence O(α3
s), to at least

the few lowest Taylor coefficients of the polarization function.

Technically speaking, the moments i.e. certain weighted integrals of the cross

section for electron-positron annihilation into heavy quarks, can be expressed

through massive tadpoles or vacuum diagrams (diagrams without dependence on

the external momentum). The evaluation of these “massive tadpoles” in three-

loop approximation has been pioneered in [7] and automated and applied to a

large class of problems in [8]. However, in spite of huge progress in calculational

techniques during recent years the problem of analytical calculation of massive

tadpoles at the four-loop level has not yet been mastered.2

Similar to the three-loop case, the analytical evaluation of four-loop tadpole

integrals is based on the Integration-by-parts (IBP) method [9]. In contrast to

the three-loop case the manual construction of algorithms to reduce arbitrary

diagrams to a few master integrals is replaced by a mechanical solution of a host

of again mechanically generated IBP equations [10].

Unfortunately, the price for this automatization is an enormous demand on

computational power. A system of more than ten million linear equations has

2The numerical evaluation is certainly possible for individual contributions; however, one

could hardly imagine a direct numerical evaluation of hundreds of thousands of separate terms

which appear after performing necessary expansions and traces at the four-loop level.
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to be generated and solved. In the present publication we present only a partial

result. We restrict ourselves to the first two non-vanishing moments and consider

only four-loop diagrams with the maximal number (two) of closed fermion loops

inside. This corresponds to terms proportional to n2
l , n2

h and nl nh, where nl

denotes the number of light quarks, considered as massless and nh the number of

massive ones. This leads to a system of about one million equations.

In general, the tadpole diagrams encountered during our calculation contain

both massive and massless lines. As is well-known, the computation of the four-

loop β-functions requires the consideration of four-loop tadpoles only composed

of completely massive propagators. Calculations for this particular case have been

performed in [11, 12].

The outline of this paper is as follows. In section 2 we briefly introduce the

notation and discuss generalities. In section 3 we discuss the reduction to master

integrals, describe the solution of the linear system of equations and give the

result for the O(α3
sn

2
f ) contribution to the polarization function for the lowest

two moments. Our conclusions and a brief summary are given in section 4.

2 Notation and Generalities

The vacuum polarization tensor Πµν(q2) is defined as

Πµν(q2) = i
∫

dx eiqx〈0|Tjµ(x)jν(0)|0〉, (1)

where qµ is the external momentum and jµ is the electromagnetic current. The

tensor Πµν(q2) can be expressed by a scalar function, the vacuum polarization

function Π(q2) through

Πµν(q2) =
(

−q2 gµν + qµ qν
)

Π(q2) + qµ qν ΠL(q2). (2)

The longitudinal part ΠL(q2) is equal zero due to the Ward identity.

The confirmation of Πµ
µ(q2 = 0) = 0 and ΠL(q2) = 0 will constitute an important

check of our calculation. The constant Π(q2 = 0) relates the QED coupling in the

on-shell scheme and the MS-scheme. The first and higher derivatives of Π(q2) at

q2 = 0 contain important scheme independent information and will sometimes be

called the physical moments. The imaginary part of the polarization function is

related to the physical observable R(s)

R(s) = 12 π Im Π(q2 = s + i ε). (3)

and properly weighted integrals of R(s) obviously coincide with the Taylor coef-

ficients
1

n!

(

d

dq2

)n

Π(q2)
∣

∣

∣

q2=0
=

1

12 π2

∫ ∞

0
ds

R(s)

sn+1
(4)
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This justifies to study the Taylor expansion around q2 = 0. In this case the

coefficients are given by massive tadpole integrals

Π(q2) =
Nc

16 π2

∑

n≥0

Cn zn (5)

with the dimensionless variable z = q2/(4 m2), where m is the mass of the heavy

quark and Nc denotes the number of colors. It is convenient to define the ex-

pansion of the coefficients Cn of the polarization function in the strong coupling

constant αs as

Cn = C(0)
n + as C(1)

n + a2
s C(2)

n + a3
s C(3)

n + . . . (6)

with as = αs

π
. Within this work we consider the n2

f contribution of C(3)
n and

define C(3)
n |n2

f
= T 2 CF Ĉ(3)

n , where T denotes the normalization factor of the

fundamental-representation generators ta defined by Tr[ta tb] = T δab and CF is

the Casimir operator in the fundamental representation.

3 Calculations and Results

Reduction to master integrals

In the first step the reducible scalar products in the numerator of the integrands

have been removed in the sense that trivial tensor reduction has been performed.

All reducible scalar products have been expressed in terms of their associated

denominators. Through this the remaining integrals can be mapped upon a set

of 12 independent topologies.

Through the expansion in the external momentum q the derivatives acting on

the polarization function generate additional powers of the denominators of the

integrands. The deeper the expansion is, the higher powers are obtained. Let Md

denote the sum of powers of propagators Di minus the number of propagators

of the generic integral. Let Mp denote the total sum of powers of the irreducible

scalar products in the numerator of the integrand. Then one obtains integrands

with Md up to 8 and Mp up to 3, for an expansion of the n2
f -contribution up to

the first physical moment.

For the reduction of these integrals to a set of a few master integrals the

standard method of IBP has been used. The reduction was implemented following

the ideas described in ref. [10, 13, 14]. In order to reduce the polarization function

to master integrals for an expansion up to the first physical moment a system of

around 880000 equations has to be generated and solved. For a deeper expansion

of the polarization function one obtains higher values for Md and Mp. This requires

a huger system of IBP-identities in order to obtain a reduction to master integrals.
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R1 R2 R3 R4 R5 R6

M1 M2 M3 M4 M5 M6

Figure 1: List of independent topologies belonging to the n2
f -contribution. The

topologies R1-R6 are reducible, whereas the topologies M1-M6 are master inte-

grals. The wavy and solid lines depict massless and massive propagators respec-

tively.

A lexicographical ordering has been introduced assigning to each integral a weight

describing its “complexity”. Integrals with increasing powers of the denominator

and increasing number of irreducible scalar products are denoted as increasingly

complicated. The linear system of equations has been solved with a program based

on FORM3 [15] which uses FERMAT [16] for simplifying the rational functions in

the space-time dimension d, which arise in this procedure. Complicated integrals

are systematically expressed in terms of simpler ones and then substituted into the

other equations. Some contributions have been checked independently with the

program SOLVE [17] from which also some experience concerning the procedure of

ordering the integrals according to their complexity has been gained. Masking of

large integral coefficients is used, a strategy also adopted in the program AIR [18].

Exploiting the symmetries of the diagrams by reshuffling the powers of the

propagators of a given topology in a unique way strongly reduces the size of the

initial input and, similarly, in the second step the number of equations which

need to be solved.

The solution of the system leads to a set of a around 130000 independent

equations. With the help of these equations the first two Taylor coefficients of the

polarization function can be expressed in terms of 6 master integrals M1-M6, with

denominator powers one and no irreducible scalar products (Md = 0, Mp = 0),

which are shown in Fig. 1.
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Calculation of the master integrals

The master integrals which belong to the diagrams M1 − M6 are defined in d =

4 − 2 ε space-time dimensions through

M1 =
µ16−4 d

N4

∫ dd`1

(2 π)d

dd`2

(2 π)d

dd`3

(2 π)d

dd`4

(2 π)d

1

D1 D2 D4 D7 D8 D10

, (7)

M2 =
µ16−4 d

N4

∫ dd`1

(2 π)d

dd`2

(2 π)d

dd`3

(2 π)d

dd`4

(2 π)d

1

D1 D2 D3 D4 D9 D10

, (8)

M3 =
µ16−4 d

N4

∫ dd`1

(2 π)d

dd`2

(2 π)d

dd`3

(2 π)d

dd`4

(2 π)d

1

D4 D5 D6 D7 D8 D10

, (9)

M4 =
µ16−4 d

N4

∫ dd`1

(2 π)d

dd`2

(2 π)d

dd`3

(2 π)d

dd`4

(2 π)d

1

D1 D2 D3 D4 D9

, (10)

M5 =
µ16−4 d

N4

∫ dd`1

(2 π)d

dd`2

(2 π)d

dd`3

(2 π)d

dd`4

(2 π)d

1

D2 D4 D5 D7 D9

, (11)

M6 =
µ16−4 d

N4

∫ dd`1

(2 π)d

dd`2

(2 π)d

dd`3

(2 π)d

dd`4

(2 π)d

1

D1 D2 D3 D4

(12)

with

D1 = `2
1 + m2 − i ε, D5 = `2

1 − i ε, D8 = (`1 + `2 + `3)
2 − i ε,

D2 = `2
2 + m2 − i ε, D6 = `2

2 − i ε, D9 = (`1 + `2 + `3)
2 + m2 − i ε,

D3 = `2
3 + m2 − i ε, D7 = `2

3 − i ε, D10 = (`1 + `2 + `4)
2 + m2 − i ε,

D4 = `2
4 + m2 − i ε

(13)

and the normalization factor

N = ε µ4−d
∫ dd`1

(2 π)d

1

D2
1

=
1

16 π2
Γ(1 + ε)

(

m2

4 πµ2

)−ε

. (14)

The factor µ denotes the renormalization scale.

Before calculating the master integral M1 we consider at first the following

combination of integrals with dots, where a dot on a line denotes an additional

power of the associated denominator

m2 + m2

ε
= N10 + O(ε). (15)

The three-loop topology in the left hand side of eq. (15) as well as all fol-

lowing three-loop diagrams are normalized by N 3 (of eq. (14)). The combi-

nation in eq. (15) is finite and can be integrated numerically, with the result

N10 = 5.3111546 . . ..
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The relation between the dotted topologies in eq. (15) and master integrals can

be obtained via IBP. One finds the following relations:

= (d−3)3 (2 d−7)
16 (d−4) m6 + (d−3) (d−2) (3 d−8) (7 d2−48 d+82)

128 (d−4) (2 d−7) m8 , (16)

= −3 (d−3) (3 d−10) (3 d−8)
256 (d−4) m6 − (d−2)2 (11 d−38)

128 (d−4) m8 . (17)

The three-loop integrals in the right hand side of eq. (17) and the factorizable

four-loop amplitude in the right hand side of eq. (16) can be calculated with

MATAD [8] or taken from ref. [19]. Inserting eq. (16) and (17) into eq. (15)

leads to3

M1 = m4
(

2

3 ε4
+

4

ε3
+

38

3 ε2
+

4

3 ε
(11 + 4 ζ3) −

2

15

(

885 + 2 π4 − 660 ζ3

)

−
4 ε

15
(4335 − 1440 a4 − 60 log4(2) + 120 N10 + 60 log2(2) π2

+ 23 π4 − 2690 ζ3 − 360 ζ5) + O(ε2)
)

, (18)

with

ζn =
∞
∑

k=1

1

kn
and a4 =

∞
∑

k=1

1

2kk4
. (19)

The same procedure has been applied for calculating the master integral M2. The

topology M2 with 3 symmetrical distributed dots is finite

m2 = N20 + O(ε)
(20)

and can be integrated numerically. The calculation yields N20 = 5.40925606 . . ..

The master integral M2 can be calculated using the IBP identity

= − (d−4) (d−3)3 (2 d−7)
6 (3 d−13) (3 d−11) m6 − (d−3) (d−2) (3 d−8) (13 d2−99 d+182)

512 (3 d−13) (3 d−11) m8

+ (d−2)4 (d−1)
256 (3 d−13) (3 d−11) m10 ,

(21)

inserting eq. (21) into eq. (20) and solving with respect to M2 results in:

M2 = m4
(

3

2 ε4
+

19

2 ε3
+

67

2 ε2
+

1

2 ε
(127 − 6 N20 + 21 ζ3) + O(ε0)

)

.

3We have been informed that the same result has been independently obtained in [20].
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This result is in agreement with eq. (4) in ref. [21].

The calculation of the master integral M3 is easy,

M3 = m4
(

1

6 ε4
+

5

6 ε3
+

3

2 ε2
−

1

6 ε
(39 − 38 ζ3) −

1

60
(4710 + 23 π4

− 1900 ζ3) −
ε

12

(

5934 + 23 π4 − 684 ζ3 − 2580 ζ5

)

+ O(ε2)
)

. (22)

For completeness we also give the results for the factorized master integrals

M4 = m6
(

−
2

ε4
−

29

3 ε3
−

163

6 ε2
−

601

12 ε
−

1

24
(635 + 896 ζ3) +

ε

720
(204705

− 184320 a4 − 7680 log4(2) + 7680 log2(2) π2 + 2176 π4 − 228480 ζ3) + O(ε2)
)

,

M5 = m6
(

−
1

3 ε4
−

3

2 ε3
−

43

12 ε2
−

1

24 ε
(81 + 64 ζ3) +

1

240
(3985 + 32 π4

− 2880 ζ3) +
ε

480

(

60435 + 288 π4 − 13760 ζ3 − 23040 ζ5

)

+ O(ε2)
)

,

M6 = m8
(

1

ε4
+

4

ε3
+

10

ε2
+

20

ε
+ 35 + 56 ε + O(ε2)

)

.

Result for the O(α3

sn
2

f) contribution

Inserting the above master integrals into the reduced n2
f -contribution and per-

forming renormalization of the strong coupling constant αs, the external current

and the mass m = m(µ2) in the MS-scheme, leads to the following result for

the first two moments of the four-loop O(α3
sn

2
f ) contribution of the heavy quark

vacuum polarization function:

Ĉ
(3)
0 = nl nh

(

7043

11664
−

127

108
ζ3 +

1

6
N10 +

(

37

324
−

7

24
ζ3

)

lµ +
2

27
l2µ −

2

27
l3µ

)

+ n2
h

(

610843

816480
+

1439

540
ζ3 −

157

210
N20 +

(

113

324
−

7

24
ζ3

)

lµ +
1

27
l2µ −

1

27
l3µ

)

+ n2
l

(

17897

23328
−

31

54
ζ3 −

19

81
lµ +

1

27
l2µ −

1

27
l3µ

)

and (23)

Ĉ
(3)
1 = nl nh

(

262877

262440
−

38909

19440
ζ3 +

29

81
N10

+
(

3779

21870
−

203

324
ζ3

)

lµ +
472

3645
l2µ −

16

135
l3µ

)

+ n2
h

(

163868

98415
+

13657

2430
ζ3 −

5648

3645
N20

+
(

14483

21870
−

203

324
ζ3

)

lµ +
236

3645
l2µ −

8

135
l3µ

)
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+ n2
l

(

42173

32805
−

112

135
ζ3 −

1784

3645
lµ +

236

3645
l2µ −

8

135
l3µ

)

(24)

with lµ = log
(

µ2

m2

)

.

The n2
l -contribution has been checked independently by taking into account the

corresponding two-loop case, in which the gluon propagator has been replaced

by a gluon propagator containing a renormalon chain with two massless fermion

one-loop insertions. The computation has been performed in a general ξ-gauge

and it has been checked that the dependence on the gauge parameter vanishes.

Furthermore it has been checked that both coefficient functions C0 and C1 meet

the standard renormalization group equation. Numerically one finds for the coef-

ficient C0 and C1 at µ = m:

C0 = as 1.4444 + a2
s (1.5863 + 0.1387 nh + 0.3714 nl) (25)

+ a3
s

(

0.0252 nh nl + 0.0257 n2
l − 0.0309 n2

h

)

,

C1 = 1.0667 + as 2.5547 + a2
s (0.2461 + 0.2637 nh + 0.6623 nl) (26)

+ a3
s

(

0.1658 nh nl + 0.0961 n2
l + 0.0130 n2

h

)

.

4 Summary and Conclusion

Using the IBP method and Laporta’s algorithm, we have evaluated a gauge in-

variant subset of the four-loop tadpole amplitudes contributing to derivatives of

the vacuum polarization at q2 = 0. All loop integrals have been mapped on a

minimal set of independent topologies. Then an elaborate automated procedure

has been developed and applied, which identifies equivalent amplitudes, factor-

izable contributions, discards massless tadpoles, and performs symmetrization.

Solving a system of nearly one million linear equations, all amplitudes can be

expressed through six master integrals. These have been evaluated analytically

or numerically to high precision. The present work can be seen as a first step

towards the evaluation of the full set of four-loop amplitude contributions to the

vacuum polarization function.
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