5 Lecture 4: quark-gluon scattering and color ordering

Consider the amplitude for quark-gluon scattering process 0 — q(p1) + G(p4) + g(p2) + g(p3).
There are three diagrams that contribute; two “abelian” and one “non-abelian”, that involves
triple gluon couplings. We will take the left-handed spinor (1| for the outgoing quark with
momentum p; and the left-handed spinor |4] for the outgoing (right-handed) anti-quark with
momentum p4. The expression for the matrix element is

iM = —ig*(1] {M () + S+ Pa)én (t”t").} [4]

512 i 513 ij

5.1
2 rabcyc <17)\4] ( )
—g T (€2 - €3(p2 — p3)a + €37(2p3 + p2) - €2 + €2x(—2p2 — p3)es) .

Here, t%* are the SU(3) Lie algebra generators in the fundamental representation and i, j, a, b
refer to color indices of quarks and gluons. The SU(3) generators are normalized Tr [t“tb] =
5% /2 and, as generators of a Lie algebra, they satisfy the commutation relation

0% — bt = 4 fabege, (5.2)

We can use this relation to remove the SU(3) structure constants from the expression for
the amplitude. Also, we rescale t* = T/+/2, to have Tr [T“Tb] = 5% As the result of this,
the amplitude is written as the sum of two terms

M= (\%)2 (Ml(Tqu)ij + Mg(TbTa)Z-j) , (5.3)

where

- (€2 - €3(p2 — p3)p

[(1|€2(i +2)esd]  (1y14]
My = —
S12 S14

+e3u(2p3 + p2) - €2 + €9 (—2p2 — p3)€3)] :

1les(1 + 3)ey |4 1~vH4
MF_[<|3< Jesldl (")
513 S14

+e3,(—2p3 — p2) - €2 + €2,(2p2 + p3)€3)] :

If we write My = M(1,2,3,4), then My = M(1,3,2,4), so it is sufficient to compute one
function of external momenta to get the full result. We note that out of three diagrams that
contribute to the amplitude M only two contribute to the function M;. The diagram that
does not contribute has its external particles arranged in such a way that they can not be
ordered (clockwise) as p1, p2, ps3, pa.

The amplitude M(1,2,3,4) is called “color-ordered”. It is transversal ( gauge-invariant)
and independent of color indices of colliding particles. We now calculate the color-ordered
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amplitude M(17,2,3,47). As the first step, we consider equal photon helicities, starting from
right-handed photons. The relevant formula reads

V2
Vu€p = ok ([K](r| + ) [kl 5 (5.5)
so that
(Lesn = Y2 (1rs) 3
(ra3) (5.6)
<1|€QR = <£> <1T2>[2|.

Also, scalar products of polarization vectors with same helicities vanishes if the two vectors
have identical reference momenta

€3R  €2R ~ (T273). (5.7)
It is then easy to see that if we choose ro = r3 = p1, the amplitude vanishes
Ml(qlLag2Rag3Raq4L) =0. (58)

Similar argument can be used to prove that amplitude Mi(q1,,92,,93,,74,) vanishes as
well. Indeed,

e = — Y2 (k] + [B)FD (5.9)
]
so that
x4 = —[Tﬁ]w ],
(5.10)
o 4] = —[“izwq.
r92]

So, we choose 7y = r3 = py and find Mi(q1,,92,,93,,q4,) = 0.

Next, we will study the color-ordered amplitude where the two photon polarizations
are different. Specifically, we consider M (q1,, 925,93, ,q4, ). The explicit expression for the
amplitude reads

(1e2r(1 + 2)espl4]  (14"4]

M=— - (€2r - €3n.(p2 — P3 )
S12 S14

(5.11)
+e3r,(2p3 + p2) - €2r + €2ru(—2p2 — p3)esr) |-

To understand how to simplify computations, we will study contributing terms in Eq.(5.11)
separately. The first term reads
2(179)[2|(1 + 2)|3) [r34] 2(179)[21](13) [r34]

(1e2r(1+2)é3L|4) = — (20 (753 O T (5.12)
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The third and the fourth terms in Eq.(5.11) contain the following spinor products

(1y*4)esr, = (1|ésp4] = _\W7
s3] 5.13)
. V2(1r3)[24] (5.
<1’}/u4]€2RH = <1’€2R4] = T,
r92)

Hence, we conclude that if we choose r3 = p4 and r9 = p; all contributions in Eq.(5.12) and
Eq.(5.13) vanish; therfore, only the second term in Eq.(5.11) contributes. We find

B 11(2 = 3)|4
M1(CI1L792L793L,<I4L) = H(SM)H €2R " €3L- (5.14)

To simplify it further, we use momentum conseration
(12 = 3)4] = —2(13)[34], (5.15)
and compute the product of two polarization vectors

(roy"2] (=Dlrsyud) _ — (17*2][47,.3) (13)[42]

RSl B2y VR[r3]  202)[43] | (12)[43] (5.16)
We therefore find ( use s14 = so3 = (23)[23] )
L 2(13)[34] (13)[42]  2(13)%[42]
M@ g2 931, 000) = oav0st (1v[a3] — (12 (23) 23 (5.17)

We can simplify this expression by multiplying it by 1 = (13)/(13). It follows from momentum
conservation that

(13)[32] = (1[3|2] = (1 (-1 — 2 — 4) 2] = —(14)[42]. (5.18)

Then,
2(13)3(43)
)(23)(34)(41)

Next, we will compute the second color-ordered amplitude M (q1,, 92, , 935, G4, ). We will

Mi(q1,,, 9255 931, @a,) = 2 (5.19)

again go through the same exercise of trying to force as many terms as possible to vanish.
We will do it slightly differently this time. The amplitude reads

1éar (142 €srl4 "4
ar— | et Danll] ey
512 514

(5.20)
+e3ru(2p3 + p2) - €21, + €20,u(—2p2 — P3)€3R) |-

Lets focus on the “non-abelian” contribution to this amplitude. There are three terms that

involve

D3 €L, P2°€3R, €2L ' €3R- (5.21)
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Since
€ - €3r ~ [r23](r32), (5.22)

we can ensure that all terms in Eq.(5.21) vanish if r9 ~ p3 and r3 ~ py. With these choices

of reference vectors, we find

L V2(12)3]
<1|62L - [32] 9
R V2)2)[34] (5.23)
€3R|4] < > .
Therefore, we find
oy 2(12)[34][31](12) - 2[34][31](12)
M(q1L792Lag3R7 q4L) - 812[32] <23> - [21] [32] <23> . (524)

For further simplifications, multiply both numerator and denominator with (12)(42). Then

2[34][31](12)2(42)

M(q1,, 92,5935, Gay) = P1B2]23) (12 (42 (5.25)
Now, in the denominator use
[32](42) = —[32](24) = —[3]2]4) = [3|1]4) = [31](14), (5.26)
s that 2[34](12)%(42
M(q1,, 921 93r, Qar) = [21[]<1]i><2>3§<1g>- (5.27)
To simplify it further, note that since s1o = s34, we have
B [34]  (12)
[34](43) = [21](21) < =1 = Ba) (5.28)
L 2(12)3(42)
M(q1,, 92,5935, Gay) = 1233 30 (A1) (5.29)

Amplitudes for other helicity configurations can be obtained from the computed ones

using complex conjugation.
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6 Lecture 5: gluon scattering amplitudes and the idea of color ordering

As the next example, we consider gluon scattering 0 — g,, + gp, + gp; + gp,- The color labels
will be chosen as az, .., a4. There are four diagrams, — three with three-gluon vertices and one
with the four-gluon vertex, see Fig. 1. Feynman rules for three-gluon vertices have already

been shown; the Feynman rules for four-gluon vertex are (clockwise (p, a), (v,b)(\, ¢), (0,d) ):
_ 7:92 {fabefcde ((g,u)\glzo . g,ua'gu)\> + facefbde (Q'ng)\g . g,uag,u)\> (6 )

1
_|_fadefbce (g;wg)\a _ gp,)\gua)] ]

Each of the three Feynman diagrams with three-gluon vertices and each term in Eq.(6.1)
contains a color structure that reads f*€ ¥ where a, b, ¢, d are choosen from a set {a1,a9,a3,a4}
and e is a dummy index. We will try to simplify the color structure.

First, lets write fo€fcd is a canonical form. To do so, we will combine two equations
for generators of SU(3) algebra

[T, T = iv2f%eTe,  Tr [T“Tb] = 5%, (6.2)
Then,
2ot pede = T [0, T[T, 7| = T | 7T T - T | TP e
(6.3)
T [T@T"TdTC] 4T [TbT“TdTC} .

Since we can do the same in all diagrams that contribute to four-gluon scattering ampliutde,
we conclude that the full amplitude can be represented as

M= M Tr [TT2TSTY]) + MyTr [T T2TUTY] + MgTr [T T T2T

6.4
+ My Tr [T(h TQ3TQ4T(12] + M5Tr [Ta1 Ta4Ta2Ta3] + MgTr [Tal Ta4Ta3Ta2] 7 ( )

where M;_g are functions of momenta and polarization vectors. We will now try to understand
which Feynman diagrams contribute to those functions. Consider first Feynman diagram in
Fig.1. The diagram has two triple-gluon vertices. The color factor is f®1¢% f#293¢ and this is

1 2 1 2 1 3 1 2
4 3 4 2 3
4 3

Figure 1. Four-gluons scattering diagrams
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expressed through traces of SU(3) generators, as

falea4 fa2a3€ ~ Tr [Tal Ta4 Taz Tas] — Ty [Tal Ta2 Ta3 Ta4]

6.5
Ty [T T T2) 4 Ty [T T T2, (6:5)

We conclude that this diagram does not contribute to two color-structures, Tr [T%1 T3 T4 T92]
and Tr [T T%2T*T], ie. where gluons 1 and 4 are not adjacent. Also, signs of various
terms in Eq.(6.5) are different. To understand the meaning of this, consider a diagram with
two three-gluon vertices where gluons appear clockwise as ((4,1),(2,3)). This diagram is
proportional to

Vag(1, —14,4)V34(2,3 — 23) f1004 fa2.03.¢
~ V39(1, —14, 4)%9(2, 37 —23) Tr (TalTa4Ta2Ta3) —Tr (TalTaQTa3Ta4) (6'6)

— Tr (T T™TST%) 4 Tr (T TS T*T™) ] :

Now, we can use the fact that the color-stripped three-gluon vertex functions V4 (i, j, k) is
anti-symmetric w.r.t. permutations of any pair of gluons, e.g. V34(i,7,k) = —V34(J, %, k).
Hence, if we synchronize the order of arguments in functions V3, with the order of arguments
in color traces, the signs of all terms in Eq.(6.6) are the same. Indeed,

Vag (1, —14,4)Vay (2,3, —23)Tr (T T T*2T7%)

= (—1)Vay(1,4, —14) V3, (2, 3, —23)Tr (TU T T T%) ,
Vag(1, —14,4)Vay (2,3, —23)Tr (T T2 T*T4)

= Vay(4,1, —14)V3,(2, 3, —23)Tr (T T T2 T%) |

(6.7)

etc. Hence, we conclude that all terms in Eq.(6.5) will enter with the sign minus provided
that the color-stripped diagram is drawn with the appropriate order of gluons in each of the
three cases; namely, the order should be identical to the order of generators in the color trace.

One can perform a similar analysis for other diagrams that contribute to luon scattering
and come to the conclusion that color-ordered amplitudes are, in fact, one and the same
function that differ only by permutations of its arguments

M = M(1,2,3,4)Tr (T T2TST) + M(1,3,2,4)Tr (T T2TUTS) + - - (6.8)

These color-ordered ( or “color-stripped”, or “partial”) amplitudes are obtained from “color-
stripped” Feynman rules shown in Fig. 2.

We note that all graphs that are properly ordered and only such graphs should be included
when color-ordered amplitude for a particular process is computed. As we will see on a simple
example of four-gluon scattering, this implies that diagrams for which external gluons are
improperly ordered can be dropped.
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Figure 2. Color stripped Feynman rules.

We now turn to the computation of the four-gluon color-ordered amplitude M (1,2, 3,4).
Three diagrams, shown in Fig. 4 contribute. The result reads

_ 1 —1
M(g1,92,93,94) = <\/g§> {514 le1-€4(4 = 1)y +enn(1+14) - eg +ean(—14 — 4) - e1] x

[6263(2 — 3))\ + €3 (3 + 23) - €9 + €9) (—23 — 2) . 63]
+ — [61 . 62(1 — 2))\ + 62>\(2 + 12) - €1 + €1 (—12 — 1) . 62] X

[63 . 64(3 — 4))\ + €4 (4 + 43) - €3 + €3) (—3 — 34) . 62]

— i [2€1 - €362 - €4 — €1 - €2€3 - €4 — €71 - €469 - €3] }
(6.9)

This expression looks rather complex and we will now discuss how to simplify its computation
dramatically. We will start with a very special case, taking helicities of all colliding gluons
to be the same. It follows from Eq.(6.9) that every term in the amplitude contains a scalar
product of polarization vectors. From Lecture 2 we know that if two polarization vectors have
the same helicity and the same reference vector, their scalar product vanishes since

er(pisri) - €n(pj, ) ~ [rivsls  er(pi, i) - €r(py, rj) ~ (riry). (6.10)

Hence, to compute M(g1L, gar, 931, 9ar) or M(g1r, 92R; 93R, gar), We just need to choose
identical reference vectors for all gluons and observe that both amplitudes vanish

M(91L, 921, 931, 941.) = M(91R; 92R: 93R 9ar) = 0. (6.11)
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Figure 3. Four-gluons scattering diagrams

Note that the above argument generalizes to the case of n-gluon scattering in a straightforward
way.

As the next step, consider the amplitude where three helicities are the same and one is
different. For definitiness, we take helicities of g1, 92,93 to the R ( “plus”) and the helicity
of g4 to be L ( “minus”). If we choose equal reference vectors for g; . 3, all scalar products
between their polarization vectors vanish. The scalar product of a right-handed polarization
vector and left-handed polarization vector reads

Y er (e sy = A7) SDsvd) o (rg)lsd]
ER(pu ) L(pJ7 ) \/§<T1> \/5[8]] <’I”Z>[S]] (6‘12)

In our case p; = ps and so choose the reference vector for all the left-handed polarization
vectors to be py, forces all the scalar product that involve €47, to vanish. Hence, we conclude
that

M(g1Rrs 92R, 93R, ga1.) = 0. (6.13)

Clearly, by a similar argument, any other amplitude for three equal helicities and one different
helicity vanishes. Also, similar to all-equal helicity case, the argument generalizes to the case
of n-gluon scattering in a straightforward way.

Next, we consider the case when there are two gluons with equal helicities and two gluons
with different helicities. We need to consider two cases, that we take to be M(g1r, 92r, 931, 94L.)
and M(g1r, 921, 3R, 94L)-

Let us begin by considering M(g1g, 92r, 931, gar,). From our previous studies, we know
that scalar products of same-helicity polarization vectors vanish if reference vectors are the
same and scalar product of different helciity vectors vanish if a reference vector for one
gluon is the momentum of the other. Therefore, if we choose identical reference vectors
for g and go and identical reference vectors for g3 and g4, we will have e1p - eag = 0 and
esr, - €4z, = 0. Next, by choosing the reference vector for left-handed polarizations to be ph,
we obtain esp - €31, = €9R - €47, = 0. Finally, by choosing the reference vector for right-handed
polarizations to be p4, we have €1 €3, = 0. Therefore, the only non-vanishing scalar product

is €1R " €4, .
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Also, thanks to our choices of reference vectors, we have

phesry = phear, =0, pheipy = phear, = 0. (6.14)
It follows from Eq.(6.9) that only the second term in the sum contributes and the result reads

_292
S12

M(g1R; 92R, 931, 9aL) = (e1r - €ar) (p1 - €2R) (P4 - €31) - (6.15)
It is straighforward to compute the scalar products in Eq.(6.15). Using Eq.(6.12), we

find
(34)[21]

€1r(P1,p3) - €4n(pa, p2) = — 31)24]’ (6.16)
and ) .
Piuthp = \/2232;)’ Pap€yy, = _\[/2;[2;] (6.17)
Now, putting everything together, we obtain
M(91R; 92r, 931, 9a1.) = i L A
s12 (32)  [23] 512523 512523 (6.18)
2[12(34)* 5 [12°(34)* 5 [12]*(34) '
sssta 0 (a3 [41] ~ 7 [12)[43](14)[41]

We would like to get rid of “wrong” brackets in this expression (34)/(14). We can further
simplify the last expression if we use momentum conservation

[234) = —[214). (6.19)

This implies [23](34) = —[21](14), so that (34)/(14) = [12]/[23]. Using this in Eq.(6.18), we

obtain
2 [12]*

[12][23][34][41]"
The second helicity amplitude that we need to consider is M(g1r, 921, 93R, 94r,). The

M(91R: 92 931, 9aL) = g (6.20)

calculation is similar to what we already did: taking reference vectors for right-handed polar-
ization vectors to be pa,, and for left-handed polarizations to be p3, implies that the only scalar
product of polarization vectors that survives is €1p - €47,. The expression for the amplitude
reads

_292

S12

M(91R, 921, 3R 94L) = (e1r - €ar) (p1 - €21) (P4 - €3R) - (6.21)

To compute the scalar products, we use

e1r(p1,p2) - €ar.(pa,p3) = — é;;li EH, (6.22)
and R R
u 312) " (243) (6.23)

Diu€or = —ma Pap€sp = —\/§<23>-
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We find

gP[13%(24)% _ g°[13]%(24)* _ ¢°[13]°(24)?

M(91Rr; 9215 93R, 94L) = = =
2 512[32](23) 512523 534514

To simplify, we multiply this expression with [13]2, use

9% (4 (24)°
[13]2(34)(41) — (413](34)[13]  (423](34)[13]
24)  (24) (24) ~1

2
[23](34)[13]  [23][134) (23][12](24)  [23][12]
to find

g3t
M(g1Rr, 921, 93R, 9aL) = DIEEENIEE

(6.24)

(6.25)

(6.26)

As we see, use of spinor-helciity methods allows us to find very compact expressions

for scattering amplitudes for four-gluon scattering. This completes the calculation of spinor-

helicity ampltudes for gluon scattering. Every amplitude that we have not computed explicitly

can be obtained from the complex conjugation.
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7 Lecture 6: gluon scattering cross-sections

In this Lecture we will discuss how to use the color-ordered helicity amplitudes calculated
in the prevoius lecture to compute scattering cross-sections. A difficult part here is the sum
over colors. Recall that the scattering amplitude is written as

Mgl 952,95, 05 = Y. M(91,9oy: Gos» Go) X Tr [T T2 T T3] (7.1)
c€P(2,3,4)

where o; is an element of the permutation set of three numbers as, as,as. To compute the
cross-section, we need to square the amplitude and sum over colors and helicities. The
helicity sums are easy but the sum over colors seems complicated. We will discuss how it can
be performed.

To sum over colors, we need to deal with products of traces, summed over color indices

Tr [T T 7972 78] x Tr [T T2 T4 T4 16,0, - (7.2)

In general, products of traces can be computed with the help of the following identity

N2-1
1
Xijikm = z; (Ta)ij (T) jn, = OimOpj — N(sijékm- (7.3)
a=
To prove Eq.(7.3), we use transformation properties of the right-hand side under SU(N), the
fact that T%s are traceless and that Tr [T aTb] = J4p- We can use these identities to, e.g.,
transform the product of traces into trace of products and simple terms. Indeed, consider

1
Tr[A1 T Ag] Tr [B1T“ B = At iis A2,52,i1B1 ey ko B2,moks 5i2m25k2j2 - N6i2j25k2m2
(7.4)

1
=Tr [AlBQBlAQ] — NTI“ [AlAQ] Tr [BlBQ] .

The result will be a complicated collection of traces to compute. It can be done but it is not
easy. However, it turns out that there is a simpler way to do it and we will describe it now.

We have so far considered the group SU(N) where S tells us that group elements should
have determinant 1. This implies that SU(N) generators are traceless; indeed, an element of

SU(N) is
gr T x14iT%% = 1 =det(g) = 14 i0*Te[T%] = T[T = 0. (7.5)

Let us imagine now that we extend the SU(N) group to U(N). This amounts to the intro-
duction of a “phase” generator T2 which commutes with all generators of SU(N) and that
is normalized as Tr[Ty2Tnz2] = 1. Hence, we take T2 to be a diagonal matrix with elements
1/ V/N. With this extension, equation for Xj;.x,, simplifies

N2-1

N2
Xijion = 2 TG o = D LT+ T T = bimi (7.6)
=1 a=1

ij,km

— 27 —



We would like to use this result to compute color factors to describe scattering of gluons,
effectively changing SU(N) — U(N). Are we allowed to do that? The answer is yes, because
U(1) gluons do not couple to other, SU(N) ones, sine f*¢ = 0 if a,b or ¢ is N2. Therefore,
we can use a simple U(N) formula to sum over colors.

Hence, we need to compute products of traces summed over colors. First, we calculate

(TqT“)Z-j = N&;;. (7.7)
Then

+
Tr [T“TbT"’Td} Tr [T“TbT"’Td} ~ Ty [T“TbTCTd} Tr [TdTCTbT“}

= T8 (TbTCTd> , (TdTCTb) T = 656 (TchTd) | (TchTb) | (7.8)
ki jm ki Jjm
~ T [TbTCTdeTCTb} — NTv [TbTCTCTb} — N3Tr[1] = N4
The second product of traces that we need to compute is more complicated
+
Tr [T“TbTCTd] Tr [T“TdeTC] — T [TaTbTCTd} Tr [TCTdTbT“}
(7.9)
—Tr [TbTCTdTCTdTb} — NTr [TCTdTCTd} .
To compute the last trace note that, for any matrix A, we have
This implies that
TTT¢)y_n2 = VN1, and  T°TT¢| cn2-q = 0. (7.11)
Therefore, the last term in Eq.(7.9) becomes
NTy [TCTdTCTd} — N3/2Ty [TNQ} = N2 (7.12)
Hence,
r 1 r 1+
Tr |TTTeT?| Tr | TOTPTYT¢| = N2 (7.13)
The remaining contirbutions are
r 1 r 1+
Tr |T°TPT°T?| Tv | T°T°T*T?| = N?,
- S -
Tr |T°TPT°T?| Tr | T*T°TT?| = N?,
- S - (7.14)
Tr | T°T°T°T?| Ty |T°TT°T?| = N?,
- - -
Tr |TeTTeT?| Tr |TOTTPT| = N2
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Suppose now we square Eq.(7.1) and sum it over gluon color indices. Then, in the result-
ing sum over colors, there will be terms proportional to squared of color-ordered amplitudes
and terms that are interferences. According to our calculation above, color-factors that mul-
tiply squares of amplitudes are N4, while color factors that multiply all interference terms
are N2. Hence, we find

6
ST IMP =N (M + N MM (7.15)

colors I=1 I#J

We will simplify this formula using the following identity for color-stripped amplitudes

6
Yy M =o. (7.16)
I=1

This equation is not obvious and we will explain shortly why it is valid. But let us see first
how it helps. We find

S MMy == M, (7.17)
I#£J I

so that Eq.(7.15) becomes

6
S IMP = NN =1) Y [M,* (7.18)

colors I=1

We conclude that for four-gluon scattering, the full amplitude squared is given by the sum of
squares of color-ordered amplitudes.

Let me now explain why the sum of color-ordered amplitudes vanishes. For our purposes,
it can be viewed as a consequence of the fact that the U(1) gluon can not interact with SU(N)
gluons. This statement is obvious as long as the color-information is kept. However, once we
use color-ordered amplitudes, the color information disappears and the “non-interaction” of
certain types of gluons with the rest manifests itself in a complex way. This is the meaning
of Eq.(7.16). To see how it works in detail, consider a four-gluon scattering amplitude and
take one of those gluons to be the U(1) gluon and the other three SU(N) gluons. Then

0= M (91 999™ ) = > M(91, Goss Gz go) Tr [THT 2T [ (7.19)
ceP

There are six different traces on the right hand side of the above equation, but they can
grouped into two groups of equal traces since TV ’ generator is proportional to an identity
matrix. Thefore

Tr [T“?vT@TaSTM] —Tr [TGQNTMT@T“S} —Tr [Ta?vTGSTMT“Q ,

7.20
Te [TRT2THT | = Tr [TRTTT% | = Tr [T . (720
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Using these equalities and the fact that TV ? s proportional to the identity matrix, we can
re-write the right-hand side of Eq.(7.19) as

0="Tr [TagTaBT(M] (m(91792793ag4) (91794792793) M(gl7g3ag4792))

+ +
c . . (7.21)
+ Tr [T TT®] (M(g1, 92, 94, 93) + M(g1, 93, 92, 94) + M(91, 94, 93, 92)) -

Now, we can choose any values for remaining color indices. For example, take ay = N?2.
Then, since Tr [T§TJ] = Tr [T}T5], we obtain

M(91792,93,94) m(91,94,92,95'3) (91,93794792)

0= + +
- - - (7.22)
+ M(gla 92, g4, 93) + M(gl7g37 92, 94) + M(gla 94, 93792)7

which is Eq.(7.16).

One the other hand, Eq.(7.21) contains more information than what we have in Eq.(7.16).
This is because, for a general group SU(N), Tr [T*T*T]| and Tr [T*T*T*] are linear-
independent. Therefore, the right hand side in Eq.(7.21) can vanish if an only if the coefficients
of two color traces there vanish independently of each other

0= m(91792793794) + m(glvg47927g3) +ﬂ(91793794792)7 (7 23)
0=M +M '

(91, 92, 94, 93) + M(91, 93, g2, 94) (91,94, g3, 92),

These two equations can be understood as a consequence of a simple identity. We can rewrite
the first equation in (7.23) ( using cyclic symmetry of the color-stripped amplitudes) as

0= M(g1, 92,93, 94) + M(g2, 91, g3, g4) + M(92, g3, g1, 94, (7.24)

which shows that the sum of all color-ordered amplitudes where the position of one gluon is
changed and the position of all other gluons are kept fixed vanishes. This is an example of a
more general set of “abelian” color identities that reduce the number of independent color-
ordered amplitudes. To give you an idea about the reduction in the number of independent
amplitudes, let me note that “naive” estimate of the number of independent color-ordered
amplitudes for n-gluon scattering is obviously (n—1)!. However, the abelian identities and the
so-called Bern-Johannson-Carrasco identities, bring the number of independent amplitudes
can be brought down to (n — 3)!.

For now, we will complete the calculation of the ampltiude squared for gluon scattering,
focusing now on the sum over gluon heliciites. We have computed two helicity ampltiudes in
the previous lecture; they are given in Eq.(6.20) and Eq.(6.26). We will use s = s19 = s34,
t = 813 = S94 and u = S23 = S14 to denote kinematic invariants. We have

2 4 2 4.4 4.2
9 g-[12] . gsi,_g's
2 4 2 4,4 )
\M(g1R, 921, 93, 9a)|> = g [13] _ 9!
2k I3l [12][23][34][41] | ~ s2u?’
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