
2 Lecture 1: spinors, their properties and spinor prodcuts

Consider a theory of a single massless Dirac fermion  . The Lagrangian is

L =  ̄

⇣
i@̂

⌘
 . (2.1)

The Dirac equation is

i@̂ = 0, (2.2)

which, in momentum space becomes

p̂U(p) = 0, p̂V (p) = 0, (2.3)

depending on whether we take positive-energy(particle) or negative-energy (anti-particle)

solutions of the Dirac equation. Therefore, in the massless case no di↵erence appears in

equations for paprticles and anti-particles. Finding one solution is therefore su�cient.

The algebra is simplified if we take � matrices in Weyl repreentation where

�

µ =

"
0 �

µ

�̄

µ 0

#
. (2.4)

and �µ = (1,~�) and �̄µ = (1,�~�). The Pauli matrices are

�

1

=

"
0 1

1 0

#
, �

2

=

"
0 �i

i 0

#
, �

3

=

"
1 0

0 �1

#
. (2.5)

The matrix �
5

is taken to be

�

5

=

"
�1 0

0 1

#
. (2.6)

We can use the matrix �
5

to construct projection operators on to upper and lower parts of

the four-component spinors U and V . The projection operators are

P̂

L

=
1� �

5

2
, P̂

R

=
1 + �

5

2
. (2.7)

Let us write

U(p) =

 
u

L

(p)

u

R

(p)

!
, (2.8)

where u

L

(p) and u

R

(p) are two-component spinors. Since

p̂ =

"
0 p

µ

�

µ

p

µ

�̄

µ 0(p)

#
, (2.9)

and p̂U(p) = 0, the two-component spinors satisfy the following (Weyl) equations

p

µ

�

µ

u

R

(p) = 0, p

µ

�̄

µ

u

L

(p) = 0. (2.10)
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Suppose that we have a left handed spinor u

L

(p) that satisfies the Weyl equation. We

can use it to construct a spinor that satisfies the Weyl equation for the right-handed spinor.

Indeed, let us take

ũ

R

(p) = i�

2

u

L

(p)⇤. (2.11)

Then,

0 = i�

2

[p
µ

�̄

µ

u

L

(p)]⇤ = i�

2

p

µ

�̄

µ⇤
u

⇤
L

(p)

= ip

µ

�

2

�̄

µ(�1)�µ2u
L

(p)⇤ = p

µ

�

µ

i�

2

u

L

(p)⇤ = p

µ

�

µ

ũ

R

(p),
(2.12)

and we conclude that ũ
R

(p) is a right-handed spinor.

To get some physics insight into what left- and right-handiness means, we write Weyl

equations in component form

u

R

(p) =
~�~p

p

0

u

R

(p), u

L

(p) = �~�~p
p

0

u

L

(p). (2.13)

For a massless particle, |p
0

| = |~p|. Hence, for positive p
0

, u
R

(p) describes an incoming particle

with spin along the direction of its momentum and u

L

(p) describes an incoming particle with

spin in the direction that is opposite to its momentum. Incoming particles can also be viewed

as outgoing anti-particles. We choose u

L

(p) to describe outgoing right-handed anti-particles

and u

R

(p) to describe lef-handed outgoing anti-particles. Outgoing particles are described by

Dirac-conjugate spinors, as usual.

We now construct the four-component spinors from the two-component ones

U

L

(p) = N

p

 
u

L

(p)

0

!
, U

R

(p) = N

p

 
0

u

R

(p)

!
, (2.14)

where N

p

is the normalization constant that we will determine later. We now introduce the

following notations for the four-component spinors

U

L

(p) = p ], U

R

(p) = p i,
U

L

(p) = h p, U

R

(p) = [ p.
(2.15)

Very often, for simplicity of notation, we will replace the momentum label in the spinor by

its label , e.g. p
i

] ! i], etc. The conjugate spinors are obtained in the standard way. We find

U

L

(p) = N

p

⇣
0, u

L

(p)†
⌘
, U

R

(p) = N

p

⇣
�u

R

(p)†, 0
⌘
. (2.16)

It is now easy to derive first results for the spinor products.

U

L

(p)U
L

(q) = h p q ] = 0, U

R

(p)U
R

(q) = [ p q i = 0, (2.17)

However, hpqi and [pq] spinor products do not need to vanish and we next compute them.

For this, we will need explicit expressions for left- and right-handed spinors.
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Let us choose the left-handed spinor to be

U

L

(p) = N

p

 
u

L

(p)

0

!
, u

L

(p) =

 
a

b

!
,

~p~�

p

0

 
a

b

!
= �

 
a

b

!
. (2.18)

where a, b are two complex numbers. We assume that they are normalized in the standard

way

u

+

L

(p)u
L

(p) = 1 ! |a|2 + |b|2 = 1. (2.19)

To construct the right-handed spinor, we write

U

R

(p) = N

p

 
0

i�

2

u

L

(p)⇤

!
, (2.20)

and since

i�

2

=

 
0 1

�1 0

!
we find i�

2

u

L

(p)⇤ =

 
b

⇤

�a

⇤

!
. (2.21)

We now have all the spinors fixed and can compute the spinor products. We will need Dirac-

conjugate spinors as well. They are

U

L

(p) = N

p

(0, 0, a⇤, b⇤) , U

R

(p) = N

p

(b,�a, 0, 0) , (2.22)

We now compute the normalization condition using the completeness relation

X

�2(L,R)

U

�

(p)⌦ U

�

(p) = N

2

p

" 
u

L

(p)

0

!
⌦ �0, u+

L

(p)
�
+

 
0

u

R

(p)

!
⌦ �u+

R

(p), 0
�
#

= N

2

p

"
0 u

L

⌦ u

+

L

(p)

u

R

⌦ u

+

R

(p) 0

#
.

(2.23)

To proceed further, we need the density matrix of the two-component spinors u

L

and u

R

.

Since those spinors describe normalized quantum mechanical states with ± spin projections

on the axis ~n = ~p/p

0

, it follows that u
L

(p)⌦u

+

L

(p) and u

R

(p)⌦u

+

R

(p) are projection operators

whose explicit expression is known from (spin one-half) quantum mechanis

u

L

(p)⌦ u

+

L

(p) =
1� ~n~�

2
=

p

0

� ~p~�

2p
0

=
p

µ

�

µ

2p
0

u

R

(p)⌦ u

+

R

(p) =
1 + ~n~�

2
. =

p

0

+ ~p~�

2p
0

=
p

µ

�̄

µ

2p
0

.

(2.24)

Hence, we find

X

�2(L,R)

U

�

(p)⌦ U

�

(p) =
N

2

p

2p
0

"
0 p

µ

�

µ

p

µ

�̄

µ 0

#
=

N

2

p

2p
0

p

µ

�

µ

. (2.25)
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. Since the density matrix for a massless Dirac fermion with momentum p should be equal to

p̂, we conclude that the normalization constant should be choosen as N
p

=
p
2p

0

.

To construct spinors explicitly, we need to solve the equation

~n~�

 
a

b

!
= �

 
a

b

!
, ~n =

~p

|~p| . (2.26)

which is equivalent to finding the wave function of the spin 1/2 state polarized along �~n
axis. The solutions of this problem are given in any book on quantum mechanics and we just

borrow them from there. So, writing the vector ~n as

~n = (sin ✓ cos�, sin ✓ sin�, cos ✓) (2.27)

we find

u

L

(p) =

 
a

b

!
=

 
� sin ✓

2

e

�i�/2

cos ✓

2

e

i�/2

!
. (2.28)

This solution is, of course, not unique since the phase of u
L

(p) is arbitrary. But, once we

choose u

L

(p) and with the rules for constructing u

R

(p) from the complex-conjugate u

L

, all

phases for spinor products are determined.

We are now in position to compute spinor products and discuss some relations between

them. We will start with

hpqi = U

L

(p)U
R

(q) = N

p

N

q

�
0, u+

L

(p)
�
 

0

u

R

(q)

!
= N

p

N

q

u

+

L

(p)u
R

(q)

= N

p

N

q

(uT
L

(p))⇤u
R

(q) = N

p

N

q

(uT
R

(q)u⇤
L

(p))

= N

p

N

q

(u+
R

(q)u
L

(p))⇤ =
⇥
U

R

(q)U
L

(p)
⇤⇤

= [qp]⇤.

(2.29)

Next, let us consider hpqi[qp]. It reads

hpqi[qp] = U

L

(p)U
R

(q)U
R

(q)U
L

(p) = Tr
⇥
U

L

(p)⌦ U

L

(p)U
R

(q)⌦ U

R

(p)
⇤
. (2.30)

The two matrices that appear in that formula are

U

L

(p)⌦ U

L

(p) =

"
0 p

µ

�

µ

0 0

#
, U

R

(q)⌦ U

R

(Q) =

"
0 0

q

µ

�̄

µ 0

#
. (2.31)

As the result

Tr
⇥
U

L

(p)⌦ U

L

(p)U
R

(q)⌦ U

R

(p)
⇤
= 2p

µ

q

µ

, (2.32)

where we have used

Tr [�
µ

�̄

⌫

] = 2g
µ⌫

. (2.33)

Therefore, we find

hpqi[qp] = 2pq. (2.34)
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Since [qp] = hpqi⇤, we find

|hpqi|2 = |[qp]|2 = 2pq or hpqi =
p

|2pq|ei�pq
, [qp] =

p
|2pq|e�i�pq

. (2.35)

This formula is usually refered to as the statement that spinor products are square roots of

scalar products.

Next property of spinor products that we want to discuss is the anti-symmetry. To see

it, consider

hpqi = U

L

(p)U
R

(q) = N

p

N

q

�
0, u

L

(p)+
�
 

0

u

R

(q)

!
= N

P

N

q

�
0, 0, a⇤

p

, b

⇤
p

�

0

BBB@

0

0

b

⇤
q

�a

⇤
q

1

CCCA

= N

p

N

q

�
a

⇤
p

b

⇤
q

� b

⇤
p

a

⇤
q

�
= (�1)N

p

N

q

�
a

⇤
q

b

⇤
p

� b

⇤
q

a

⇤
p

�
= �hqpi.

(2.36)

Therefore, we conclude that spinor products satisfy the following equations

hpqi = �hqpi, [pq] = �[qp], (2.37)

where the latter relation can be proved in a similar manner.

In practical computations, we often need to compute matrix elements of (products) of

Dirac matrices between di↵erent spinors. For those cases there are a few identities that can

be used. For example, there is a relation

U

R

(p)�µU
R

(q) = U

L

(q)�µU
L

(p) (2.38)

that we will now prove. Using explicit representation for left- and right-handed spinors, we

obtain

U

L

(q)�µU
L

(p) = N

p

N

q

u

L

(q)+�̄µu
L

(p),

U

R

(p)�µU
R

(q) = N

p

N

q

u

R

(p)+�µu
R

(q).
(2.39)

We will now use a relation between two-component left- and right-handed spinors u

R

(q) =

i�

2

u

⇤
L

(q), to rewrite U

R

(p)�µU
R

(q) as

U

R

(p)�µU
R

(q) = N

p

N

q

u

R

(p)+�µu
R

(q) = N

P

N

q

u

T

L

(p) �
2

�

µ

�

2

u

⇤
L

(q). (2.40)

Since

�

2

�

µ

�

2

=

8
><

>:

�

µ

µ = 0

��µ µ = 1, 3

�

µ

µ = 2

, (�µ)T = (�1)�µ2
�

µ

, (2.41)

we can write

�

2

�

µ

�

2

= (�̄µ)T . (2.42)
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Then,

N

P

N

q

u

T

L

(p) �
2

�

µ

�

2

u

⇤
L

(q) = N

p

N

q

u

T

L

(p) (�̄µ)Tu⇤
L

(q) = N

p

N

q

u

L

(q)+�̄µu(p). (2.43)

We conclude

[p�µqi = hq�µp]. (2.44)

Further relations between di↵erent spinor products are obtained using Fiertz identities

for �µ matrices. We start by writing

�

µ

ab

(�
µ

)
cd

= �

0

ab

�

0

cd

� ~�

ab

~�

cd

= �

ab

�

cd

� ~�

ab

~�

cd

. (2.45)

To simplify the second term, we write

~�

ab

~�

cd

= A�

ad

�

cb

�B�

ab

�

cd

. (2.46)

Using the fact that �
ab

�

i

ab

= 0 and that ~�
ab

~�

bc

= 3�
ac

, we find two equations for A and B

0 = A� 2B, 3 = 2A�B,) B = 1, A = 2. (2.47)

For the �-matrices, the result reads

(�µ)
ab

(�
µ

)
cd

= (�̄µ)
ab

(�̄
µ

)
cd

= 2 (�
ab

�

cd

� �

ad

�

bc

) = 2✏ace✏
bde

= 2(i�
2

)
ac

(i�
2

)
bd

. (2.48)

The significance of this equation is that the order of spinor indices, as they appear on the

left- and the right-hand sides is di↵erent and this can be used for simplifications of spinor

products. Indeed, consider

hp�µq]hk�
µ

l] = U

L

(p)�µU
L

(q)U
L

(k)�
µ

U

L

(l)

= N

p

N

q

u

+

L

(p)�̄µu
L

(q) N
k

N

l

u

+

L

(k)�̄
µ

u

L

(l)

= N

p

N

q

N

k

N

l

[u
L

(p)]⇤
a

(�̄
µ

)
ab

[u
L

(q)]
b

[u
L

(k)]⇤
c

(�̄
µ

)
cd

[u
L

(l)]
d

= 2N
p

N

q

N

k

N

l

[u
L

(p)]⇤
a

i�

2

ac

[u
L

(k)]⇤
c

[u
L

(q)]
b

i�

2

bd

[u
L

(l)]
d

(2.49)

To simplify this expression, we use the relation between left- and right-handed spinors

i�

2

u

⇤
L

= u

R

, (2.50)

to write

N

p

N

k

[u
L

(p)]⇤
a

i�

2

ac

[u
L

(k)]⇤
c

= N

p

N

k

[u
L

(p)]⇤
a

[u
R

(k)]
a

= N

p

N

k

u

L

(p)+u
R

(k) = hpki,
N

q

N

l

[u
L

(q)]
b

i�

2

bd

[u
L

(l)]
d

= �u

+

R

(q)u
L

(l) = [lq].
(2.51)

Hence, we find an identity

hp�µq]hk�
µ

l] = 2hpki[lq]. (2.52)
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Similarly

[k�µlihp�
µ

q] = 2[kq]hpli. (2.53)

Finally, spinor products obey Schouten identities of the following form

hijihkli+ hikihlji+ hilihjki = 0,

[ij][kl] + [ik][lj] + [il][jk] = 0.
(2.54)

To prove the Schouten identities note that, due to the antisymmetry of a spinor product

hiji = �hjii, the left hand sides of the above equations are antisymmetric w.r.t. j, k and l.

However, a fully anti-symmetric combination of three two-components object ( well, e↵ectively

two-component) is zero. Indeed, suppose we write a right-handed spinor (so e↵ectively two

component object) as

�i = jihkli+ kihlji+ lihjki. (2.55)

This spinor can be decomposed as

�i = a

⇠

⇠i+ a

⌘

⌘i, (2.56)

where ⇠ and ⌘ are two basis spinors. It is easy to see that hj�i = hk�i = hl�i = 0 ( this

follows from hjji = 0 and the antisymmetry of spinor products). These equations imply

a

⇠

hj⇠i+ a

⌘

hj⌘i = 0, (2.57)

and similar equations for other spinors. The solution a

⇠

= a

⌘

= 0 which implies that �i = 0.

The Schouten identities then follows.

Another useful equation is a relative of the Gordon identity, but for massless spinors

hp�µp] = U

L

(p)

 
0 �

µ

�̄

µ 0

!
U

L

(p) = Tr

"
U

L

(p)⌦ Ū

L

(p)

 
0 �

µ

�̄

µ 0

!#

= Tr

" 
0 p

⌫

�

⌫

0 0

! 
0 �

µ

�̄

µ 0

!#
= p

⌫

Tr (�⌫ �̄µ) = 2pµ.

(2.58)

There is a relation between matrix elements of products of �-matrices that allows us to

reverse the order of elements of the matrix prodcuts. Indeed,

hp|�µ
1

....�

µ2N+1 |q] = Ū

L

(p)�µ
1

....�

µ2Nn1
U

L

(q)

= N

P

N

q

�
0, u+

L

(p)
�
 

0 �

µ1
....�

µ2n+1

�̄

µ1
....�̄

µ2n+1 0

! 
u

L

(q)

0

!

= N

p

N

q

u

+

L

(p)�̄µ1
....�̄

µ2n+1
u

L

(q) = N

p

N

q

u

T

L

(q)�̄µ2n+1,T
...�̄

µ1,T
u

⇤
L

(p)

= N

p

N

q

u

T

L

(q)�
2

�

µ2n+1
...�

µ1
�

2

u

⇤
L

(p) = N

p

N

q

u

R

(q)+�µ2n+1
...�

µ1
u

R

(p),

(2.59)

where we used �
2

�̄

µ

�

2

= (�µ)T . Hence, we obtain

hp|�µ
1

....�

µ2n+1 |q] = [q|�µ2n+1
....�

µ1 |pi. (2.60)
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Similarly

[p|�µ
1

....�

µ2n+1
qi = hq|�µ2n+1

....�

µ1
p]. (2.61)

A relation for even number of � matrices reads

[p|�µ1
....�

µ2n |q] = �[q|�µ2n
...�

µ1
p],

hp|�µ1
....�

µ2n |qi = �hq|�µ2n
...�

µ1
pi. (2.62)

Finally, consider hp�µq]�
µ

. This is a matrix, such that it depends on the spinors con-

structed out of p and q momenta and that has the property that it must contain ii[j and i]hj,
where i = p, q and j = p, q since �

µ

is helicity conserving. Hence, we can write

hp�µq]�
µ

= A

1

|q]hp|+A

2

|pi[q|+A

3

|p]hq|+A

4

|qi[p|. (2.63)

The coe�cients A

1..4

can be constrained by considering matrix elements of the right-hand

side and the left hand side with various spinors. Taking the matrix element with respect to hp
and q], we find A

4

= 0. Taking the matrix element with respect to [q and pi, we find A

3

= 0.

Hence,

hp�µq]�
µ

= A

1

|q]hp|+A

2

|pi[q|. (2.64)

To find A

1

and A

2

, we consider matrix elements with repspect hk and |l], where k and l are

independent momenta. We find

A

2

hkpi[ql] = hp�µq]hk�
µ

l] = 2hpki[lq], (2.65)

which means that A
2

= 1. We find A

1

in a similar way. We obtain

hp�µq]�
µ

= 2 (|q]hp|+ |pi[q|) . (2.66)

This concludes our discussion of the spinor algebra.
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3 Lecture 2: massless spin-one particles

A polarization vector ✏ of a massless particle with momentum k is a four-vector that satisfies

the following conditions

0 = ✏

µ

k

µ

, ✏

µ

r

µ = 0, ✏

µ

✏

µ,⇤ = �1. (3.1)

The first condition is “transversality”, the second condition is the gauge choice ( r

2 =

0, r
µ

A

µ = 0 and the last condition is normalization. The sum over two polarizations reads

X

�2(1,2)

✏

µ

�

✏

⇤⌫
�

= �g

µ⌫ +
k

µ

r

⌫ + k

⌫

r

µ

k · r . (3.2)

Given the two massless vectors k and r, it is easy to construct a four-vector that satisfies

the transversality and the gauge choice conditions. In fact, we can write down two independent

vectors

⌘

µ

1

= [r�µki, ⌘

µ

2

= hr�µk]. (3.3)

It is obvious that, thanks to Dirac equation for massless spinors, the transversality and the

gauge conditions are fullfilled. To claim that the two ⌘ vectors can be choosen as polarization

vectors for massless gauge bosons, we will have to normalize them, check their orthogonality

and make sure that the sum over polarizations works out correctly.

To do this, we need to find complex conjugate vectors. To this end, consider

⌘

⇤µ
1

= ([r�µki)⇤ = �U
R

(p)�µU
R

(k)
�⇤

=
�
u

+

R

(r)�µu
R

(k)N
r

N

k

�⇤

= u

T

R

(r)�µ⇤u⇤
R

(k)N
r

N

k

= u

L

(r)T⇤
i�

T

2

�

⇤µ(�i)�⇤
2

u

L

(k)N
r

N

k

(3.4)

Using �⇤
2

= ��
2

, �T
2

= ��
2

and �
2

�

µ⇤
�

2

= �̄

µ, we find

u

L

(r)T⇤
i�

T

2

�

⇤µ(�i)�⇤
2

u

L

(k)N
r

N

k

= N

r

N

k

u

L

(r)+�̄µu
L

(k) = hr�µk], (3.5)

which means

⌘

⇤µ
1

= ⌘

µ

2

and ⌘

µ⇤
2

= ⌘

µ

1

. (3.6)

Therefore,

⌘

⇤
1

· ⌘
2

= ⌘

2

· ⌘
2

= hr�µk]hr�µk] ⇠ hrri[kk] = 0, (3.7)

which implies that the two ⌘ vectors are indeed orthogonal.

To normalize the ⌘-vectors, we need to compute

⌘

1

· ⌘⇤
1

= ⌘

1

· ⌘
2

= [r�µkihr�
µ

k] = hr ( [r�µki�
µ

) |k]
= 2hr ( |r]hk|+ |ki[r| ) |k] = 2hrki[rk] = �

⇣p
2[rk]

⌘⇣p
2[rk]

⌘⇤
.

(3.8)

Therefore, for normalized vectors we choose ( the signs are choosen for convenience)

✏

µ

1

= � [r�µkip
2[rk]

, ✏

µ

2

=
hr�µk]p
2hrki , (3.9)
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To understand what these vectors correspond to, we will evaluate them in a familiar

kinematic case. Consider a photon propagating in the +z direction, so that its momentum is

k

µ = E (1, 0, 0, 1). The vector rµ is taken to be r

µ = E (1, 0, 0,�1). Then

|k] = U

L

(k) = N

k

 
��
0

!
, �� =

 
0

1

!
,

ki = U

R

(k) = N

k

 
0

i�

2

�

⇤
�

!
= N

k

 
0

�

+

!
, �

+

=

 
1

0

!
,

(3.10)

Next, we need similar formulas for r-spinors. We find

hr| = U

L

(r) = N

r

�
0,�T

+

�
,

[r| = U

R

(r) = N

r

���T�, 0
�
.

(3.11)

Therefore,

[rk] = �N

r

N

k

�

T

��� = �N

r

N

k

, hrki = N

r

N

k

.

(3.12)

Then,

[r|�µki = �N

r

N

k

�

T

��
µ

�

+

= �N

r

N

k

(0, 1, i, 0) ,

hr�µk] = ([r|�µki)⇤ = �N

r

N

k

(0, 1,�i, 0) .
(3.13)

Hence, we find

✏

µ

1,2

= � 1p
2
(0, 1,±i, 0) . (3.14)

We will consider calculations of scattering amplitudes assuming that all particles are

outgoing. For this, we need complex-conjugates of actual polarization vectors. Hence, we

write

✏

µ

2

=
hr�µk]p
2hrki = � 1p

2
[0, 1,�i, 0] = � 1p

2
[0, 1, i, 0]⇤ = ✏

⇤µ
R

, etc. (3.15)

So, to summarize, we will use polarization vectors for outgoing massless vector bosons

✏

⇤µ
R

=
hr�µk]p
2hrki , ✏

⇤µ
L

= � [r�µkip
2[rk]

. (3.16)

In what follows, I will skip the complex-conjugate notation for the sake of simlpicity.

The polarization vectors have peculiar transformation properties with respect to changing

the reference vector. Indeed, consider a di↵erence of two polarization vectors with di↵erent

reference vectors

✏

µ

R

(k, r)� ✏

µ

R

(k, s) =
1p
2

✓hr�µk]
hrki � hs�µk]

hski
◆

=
(hr�µk]hski � hs�µk]hrki)p

2hrkihski . (3.17)

To simplify this further, we use the following equation

p̂ = |p]hp|+ |pi[p|. (3.18)
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