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Problem 1 - Emission of soft photons

In TTP1 we studied the emission of a soft photon. Consider now the cross-section for the emission of n
photons. When all photons become soft (i.e. their energies go to zero) the cross-section can be written as
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where ae,, = €%/(47), dog is the cross-section for the hard process (the cross-section for the processes
where all soft photons have been removed) and
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This integral is divergent both for |k| — oo and for |k| — 0. The divergence at |k| — oo is an artifact of our
approximation which is by definition valid only for soft photons. We therefore impose a cutoff |k| < wimaz-
The residual divergence at |k| — 0 is the infra-red one; it must be properly regularized. In TTP1 this was
done by giving a fictitious mass A to the photons. In this exercise you should repeat the computation by
using dimensional regularization, in the approximation of back-to-back massless emitters.

1. Consider the emission of a soft photon from a massless electron, i.e. p? = p?c = 0. In dimensional
regularization the quantity in (2) becomes

(%) 7m0 = | (;jff% Oomar = ) { 202 3)

where, as usual, the physical limit is obtained for d — 4. Is the integral (3) Lorentz-invariant?

2. In order to compute (3), consider the simplifying situation where the emitters are back to back,
pi = (F£,0,0,F), p;f = (E£,0,0,—F), and show that
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Note that in order to perform the d-dimensional integration you will need the recursive definition of
the d-dimensional solid angle
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3. Eq (4) contains a 1/€? pole. What is the physical origin of it? By expanding w
determine the terms that are proportional to In (wWpa.) and In? (Wimaz)-



Problem 2 - Emission of collinear photons

The aim of this exercise is to study the behavior of S-matrix elements (or scattering amplitudes) in the limit
when three-momenta of two massless particles become parallel (collinear) to each other!. Similar to the
situation with soft photons that we considered earlier, the collinear kinematics leads to large ( eventually
infinite) amplitudes. To this end, consider the amplitude of an arbitrary process with n massless electrons
of momenta py, ..., p, and one photon with momentum k, M(py, ..., pn; k). We assume that the photon and
the electron with momentum p; become collinear.

1. Start by dividing the diagrams that contribute to M into two groups
M = M, + M, (6)

where M is given by the diagram where the photon k is emitted off the electron p;, and M,
contains all other diagrams. Which of the two terms in (6) is singular in the collinear limit?

2. Let us write the two terms as
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so that potentially singular terms 1/(p; - k) are shown explicitly.

We square M and write the result as
IMP? = M2 + [Mps|* + 2Re(MiM,s) . (8)

Use Eq.(7) to determine which of the three terms in Eq.(8) may give non-integrable contributions to
scattering cross-section.

3. The above statement depends on the gauge chosen to describe the emitted photon field. Indeed, show
that if one uses the axial gauge
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the only term that gives the divergent contribution to the cross-section is |M,|?, i.e. the interference
term is integrable, while in the Feynman gauge both |M,|? and the interference term give divergent
contributions. The momentum p; is introduced through the so-called Sudakov decomposition

kM = apy + By + K (10)

where p; is the electron momentum, p; is chosen such that p? = 0 and p; - p; # 0, and p; - k) =
p1 - ki = 0. See additional material to this exercise for details.

4. Use the axial gauge to show that in the collinear limit and up to the terms that give integrable
contributions to a cross-section, the amplitude squared |M|? reads
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where ae,, = €?/(4m) is the fine structure constant, /W(p, .oty Pn) 18 the matrix element that only
depends on fermion degrees of freedom (photon emission factorizes), p = k + p1, a has been defined
in (10) and 2 = 1/(1 + «). What does a physically represent in the collinear limit? Can you think of
a reason why Eq.(11) is important?

1For a discussion of collinear kinematics, please refer to additional material for this exercise.



