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Problem 1 - Emission of soft photons

In TTP1 we studied the emission of a soft photon. Consider now the cross-section for the emission of n
photons. When all photons become soft (i.e. their energies go to zero) the cross-section can be written as

dσn ≈
1

n!
dσ0 T

n(pi, pf )
(αem

π

)n
, (1)

where αem = e2/(4π), dσ0 is the cross-section for the hard process (the cross-section for the processes
where all soft photons have been removed) and

(αem
π

)
T (pi, pf ) = e2

∫
d3 k

(2π)32ω

{
2 pi · pf

(pf · k)(pi · k)
−

p2f
(pf · k)2

− p2i
(pi · k)2

}
. (2)

This integral is divergent both for |k| → ∞ and for |k| → 0. The divergence at |k| → ∞ is an artifact of our
approximation which is by definition valid only for soft photons. We therefore impose a cutoff |k| < ωmax.
The residual divergence at |k| → 0 is the infra-red one; it must be properly regularized. In TTP1 this was
done by giving a fictitious mass λ to the photons. In this exercise you should repeat the computation by
using dimensional regularization, in the approximation of back-to-back massless emitters.

1. Consider the emission of a soft photon from a massless electron, i.e. p2i = p2f = 0 . In dimensional
regularization the quantity in (2) becomes

(αem
π

)
T (pi, pf ) = e2

∫
dd−1 k

(2π)d−12ω
θ(ωmax − |k|)

{
2 pi · pf

(pf · k)(pi · k)

}
, (3)

where, as usual, the physical limit is obtained for d→ 4. Is the integral (3) Lorentz-invariant?

2. In order to compute (3), consider the simplifying situation where the emitters are back to back,
pi = (E, 0, 0, E), pf = (E, 0, 0,−E), and show that

T (pi, pf ) =
πε ω−2εmax

ε2
Γ(1− ε)

Γ(1− 2 ε)
= πε ω−2εmax Γ(1 + ε)

(
1

ε2
− π2

3
+O(ε)

)
, (4)

Note that in order to perform the d-dimensional integration you will need the recursive definition of
the d-dimensional solid angle

dΩn = dΩn−1 d cos θ (1− cos2 θ)(n−3)/2 . (5)

3. Eq (4) contains a 1/ε2 pole. What is the physical origin of it? By expanding ω−2εmax in powers of ε,
determine the terms that are proportional to ln (ωmax) and ln2 (ωmax).
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Problem 2 - Emission of collinear photons

The aim of this exercise is to study the behavior of S-matrix elements (or scattering amplitudes) in the limit
when three-momenta of two massless particles become parallel (collinear) to each other1. Similar to the
situation with soft photons that we considered earlier, the collinear kinematics leads to large ( eventually
infinite) amplitudes. To this end, consider the amplitude of an arbitrary process with n massless electrons
of momenta p1, ..., pn and one photon with momentum k,M(p1, ..., pn; k). We assume that the photon and
the electron with momentum p1 become collinear.

1. Start by dividing the diagrams that contribute to M into two groups

M =Ms +Mns , (6)

where Ms is given by the diagram where the photon k is emitted off the electron p1, and Mns

contains all other diagrams. Which of the two terms in (6) is singular in the collinear limit?

2. Let us write the two terms as

Ms = e ū(p1) ε/(k)
p/1 + k/

2p1 · k
Ma(k + p1, ..., pn) , Mns = ū(p1) εµ(k)Mµ

b (p1, ..., pn; k) . (7)

so that potentially singular terms 1/(p1 · k) are shown explicitly.

We square M and write the result as

|M|2 = |Ms|2 + |Mns|2 + 2 Re(M∗sMns) . (8)

Use Eq.(7) to determine which of the three terms in Eq.(8) may give non-integrable contributions to
scattering cross-section.

3. The above statement depends on the gauge chosen to describe the emitted photon field. Indeed, show
that if one uses the axial gauge∑

λ

ε(λ)µ (k) ε∗(λ)ν (k) = −gµν +
p̄µ1k

ν + p̄ν1k
µ

p̄1 · k
, (9)

the only term that gives the divergent contribution to the cross-section is |Ms|2, i.e. the interference
term is integrable, while in the Feynman gauge both |Ms|2 and the interference term give divergent
contributions. The momentum p̄1 is introduced through the so-called Sudakov decomposition

kµ = αpµ1 + βp̄µ1 + kµ⊥ (10)

where p1 is the electron momentum, p̄1 is chosen such that p̄21 = 0 and p1 · p̄1 6= 0, and p1 · k⊥ =
p̄1 · k⊥ = 0 . See additional material to this exercise for details.

4. Use the axial gauge to show that in the collinear limit and up to the terms that give integrable
contributions to a cross-section, the amplitude squared |M|2 reads

|M(p1, ..., pn; k)|2 ≈
(

4παem
p1 · k

)
1 + x2

1− x
|M̃(p, ..., pn)|2 , (11)

where αem = e2/(4π) is the fine structure constant, M̃(p, ..., pn) is the matrix element that only
depends on fermion degrees of freedom (photon emission factorizes), p = k + p1, α has been defined
in (10) and x = 1/(1 +α). What does α physically represent in the collinear limit? Can you think of
a reason why Eq.(11) is important?

1For a discussion of collinear kinematics, please refer to additional material for this exercise.
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