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Problem 1 - The imaginary part of a 1-loop triangle

Consider the following 1-loop triangle with massless internal propagators and massive external lines
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In the decay kinematics one has p→ p1 + p2 with p2 ≥ (m1 +m2)2 . The integral T (p2,m1,m2) is finite so
that no regularization is required.

1. Use Feynman parameters to show that T (p2,m1,m2) for this choice of the kinematics, cannot develop
any imaginary part. Note: You do not need to compute the integral explicitly, but only to show that
it must be real!

2. We want to compute now this imaginary part explicitly using Cutkosky rules. Start off by computing
the discontinuity in p2, i.e. the one obtained by cutting the two propagators connecting to the vertex
with momentum p. Show that this discontinuity reads
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with µ12 = (m1 + m2) and µ̄12 = (m1 −m2). It is convenient to work in the reference frame where

pµ is at rest, namely pµ = (W, ~0 ), where W =
√
p2 is the total energy of the system.

3. Compute now the discontinuity in p21 = m2
1 by cutting the two propagators connecting to the vertex

with momentum p1. In this case it is convenient to work in the reference frame where p1 is at rest,
namely pµ1 = (m1, ~0 ). Show that in this case one gets
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4. Finally the third cut does not need to be computed and can be obtained just permuting m1 and m2

in (3)
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5. Show then that the total imaginary part must is, as expected from 1., zero

1

π
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= Disc(p2,m1,m2) + Disc(m1, p

2,m2) + Disc(m2, p
2,m1) = 0 . (5)

Problem 2 - Leading Order Hadronic Contribution to aµ

The muon anomalous magnetic moment shows one of the most intriguing discrepancies between its measured
value and the prediction within the Standard Model; numerically, the discrepancy is 3.6σ which, in principle,
implies that there is only one chance in 10 thousand (roughly) that the Standard Model is a valid description
of Nature.

The hadronic contributions to the muon anomalous magnetic moment are currently the source of the
largest error in the theoretical determination. In this problem we will compute an approximation of the
leading hadronic contribution, shown in Figure 1.
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Figure 1: The leading order hadronic contribution to the muon anomalous magnetic moment.

Let us remind ourselves how the anomalous magnetic moment of the muon is defined. Consider µµγ∗

interaction vertex that represents muon scattering in the external electromagnetic field. Using Lorenz
symmetry and gauge invariance one can show that this vertex can be written as

V α(q) = −ieu(p2)

[
FD(q2) γα + FP (q2)

i σαβ qβ
2m

]
u(p1) ,

where q = p2 − p1, m is the muon mass and the two form factors, Dirac FD and Pauli FP , are scalar
functions of q2, the momentum transfer1. The anomalous magnetic moment of the muon is then defined
as the value of the Pauli form factor at zero momentum transfer

aµ = FP (0). (6)

Our goal is to calculate the contribution of Figure 1 to aµ. Since we do not have an analytic form
for the hadronic loop, we will use a dispersion representation for the photon propagator to express this
contribution through the cross-section of e+e− annihilation to hadrons. To this end, we write
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where k is the momentum of the photons and Π(k2) satisfies the subtracted dispersion relation
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1Note that, since this decomposition is based only on Lorentz and gauge invariance, it is valid independently on the
perturbative order and it is not restricted to QED only!
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The quantity Rhadr(s) is defined as the ratio

Rhadr(s) =
σe+e−→hadrons(s)

σpoint
, (9)

where σe+e−→hadrons(s) is the cross-section to produce hadrons in e+e− annihilation at the energy
√
s and

σpoint = (4πα2)/3/s is an auxiliary normalization factor.

1. To calculate the hadronic vacuum polarization contribution to aµ, start by writing the expression for
the diagram in Figure 1 using Eqs. (7) and (8).

2. Observe that the integration over the loop momentum k can be performed in a standard way (
introducing Feynman parameters, shifting the momentum, etc.). In general, the integration over the
loop momentum gives you both the Dirac and the Pauli form factor; the Dirac form factor is the one
that is more difficult to compute but it is of no interest for us since it does not contribute to aµ.
Therefore, when you perform the algebraic manipulations, make sure to disregard all terms that can
contribute only to the Dirac form factor; this will simplify the calculation quite a bit. Also, you may
find the Gordon identity

u(p2)γαu(p1) = u(p2)

[
(p1 + p2)α

2m
+
iσαβqβ

2m

]
u(p1), (10)

useful to get rid of the Lorenz structures pα1 and pα2 in favor of γα and σαβqβ .

3. Show that the anomalous magnetic moment aµ can be written in the following form
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where x is one of the Feynman parameters.

4. Usually, the integral in Eq.(11) is performed numerically, using experimental data for R(s). We will
not do that but, instead, we will evaluate the integral in Eq.(11) approximately. At low energies, the
cross-section for e+e− annihilation to hadrons is dominated by the contribution of the ρ-meson ( see
Figure 2.).

Figure 2: Dependence of Rhadr(s) on
√
s.

The cross-section for e+e− → hadrons at the ρ-peak can be written as

σe+e−→ρ(s) =
12π2 Γρ→e+e−

mρ
δ(s−m2

ρ) , (12)
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where Γρ→e+e− is the partial decay width of the ρ into e+e−.2

Use Eq.(12) and Eq.(11) to calculate the ρ-meson contribution to aµ. Use Γρ→e+e− = 7.02 keV,
mµ = 105 MeV, mρ = 770 MeV to derive numerical value of aµ(ρ). To simplify the integration over
x in Eq.(11) use the fact that mρ � mµ.

5. Detailed analysis of σ(e+e− → hadrons) data gives ahpvµ = 6923(42)(3)× 10−11, where the first error
is experimental and the second is due to theory. How does the contribution of the ρ-meson computed
by you compare with the result of a more complete analysis? Can it be used as a rought estimate?

2The origin of this formula is explained in Lecture 4, see notes.
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