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Problem 1 - Stability of the electroweak ground state in the SM

In class we have studied the case of a simple φ4 theory with a potential characterized by two relative
minima, say φ− and φ+, only one of which, say φ−, is an absolute minimum. We have seen that quantum
mechanics renders the vacuum φ+ a false vacuum, allowing its decay by tunnelling to the real vacuum φ−.
The details of the decay were worked out in this particularly simple theory. It is indeed very interesting
to figure out whether a similar mechanism can take place also in the electroweak standard model (SM),
rendering the electroweak vacuum, and therefore the universe as we know it, unstable under quantum
fluctuations. If this was the case, one could use the methods described in the lecture in order to estimate
the life-time of the universe, and if this turned out to be much smaller than the age of the universe, one
could then argue the necessity of new physics beyond the standard model (BSM) in order to stabilize the
vacuum we live in.
The SM contains a complex scalar doublet with hypercharge −1, the Higgs field,
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with a potential

V (φ) = m2|φ|2 + λ|φ|4 =
1
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λh4 + ... (2)

where we neglected terms that go to zero when G → G− → 0. The neutral component H acquires a
non-vanishing expectation value 〈H〉 = v, where
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(
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√
2
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≈ 246 GeV ,

and the mass of the field h is m2
H = V ′′(h)

∣∣∣
h=v

= 2λ v2. The SM potential, at variance with the example

discussed in class, does not develop classically two relative minima of different depth. On the other hand,
though, quantum corrections can in principle make the classical vacuum unstable. If we consider field
configurations with h� v, to good accuracy we can approximate the potential as

V (h) ≈ 1

4
λ(h)h4 (3)

where λ(µ) is now the running coupling computed at scale µ, which absorbs the quantum corrections to
V (h). It becomes than clear that, if for some value of h λ(h) becomes negative, then the minima in h = ±v
cannot be absolute minima anymore and the electroweak vacuum becomes unstable. We want to try to
calculate a bounce solution in this situation.

1. We know that the bounce solution of minimum action must be invariant under four-dimensional
rotations in euclidean space-time, i.e.

h = h(r) , r2 = |~x|2 + τ2 where τ is the euclidean time.

Assume for simplicity that λ is fixed to some numerical negative value, λ < 0. Show that the field
equation for the bounce becomes

h′′(r) +
3

r
h′(r) = λh3(r) . (4)
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2. We look for a solution that interpolates between the false vacuum at infinite euclidean time and the
real vacuum at τ = 0, i.e.

h(r)
∣∣∣
r→∞

= v ≈ 0 , (5)

where we are neglecting the value of v ≈ 246 GeV as in Eq. (3). We require moreover that the solution
is regular at the origin r = 0

dh(r)

dr

∣∣∣
r=0

= 0 . (6)

3. Assuming that λ < 0, solve Eq. (4) using as Ansatz a series expansion

h0(r) =

∞∑
k=0

Ak r
k , with A0 > 0 .

Show that the solution can be written as

h0(r) =

√
8

|λ|
R

R2 + r2
. (7)

Note that, since

h0(0) =

√
8

|λ|
1

R

we can associate R with the value of the bounce in r = 0.

4. Calculate the value of the euclidean action S[h0] on the bounce solution (7) and show that it is
independent of the value of R. This is a consequence of the invariance under scale transformations
(i.e. conformal invariance).

5. Show that Eq. (4) is invariant under scale transformations, i.e. show that if h(r) is a solution of (4),
then

h(r)→ a ha(ar)

is also a solution.

6. Using the explicit expression for the bounce action derived above and the tunnelling probability in
the semi-classical approximation

p ≈
(
TU
R

)4

e−S[h0]

estimate the allowed values of λ in function of the parameter R, to be compatible with the actual age
of the universe TU ≈ 1010 years.

7. In order to gain a quantitative understanding, one must compute the running of λ(µ) in the standard
model, which is mainly driven by the value of the top mass, mt. This has been done by different
authors in the last years in order to determine, as precisely as possible, the fate of our universe
according to the physics we know. Read papers [1, 2] (and, if you wish, further references therein).
Can you figure out how this works? In particular, it is shown there that the typical energy at which
λ becomes negative is ΛI ≈ 1010 GeV. What does this imply for the size of the bounce?
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