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Problem 1 - The non-critical vortex in the small Higgs mass limit

In last week’s exercise we derived the energy of the non-critical vortex for the case where the Higgs mass
is of the same order of magnitude (but not exactly the same!) as the vector boson mass, i.e. mV ≈ mH .
The result was an energy of approximately E ≈ m2

V /e
2. On the other hand, during the lecture the energy

of the vortex was shown to be E ' 2πv2 log(mH/mV ) in the case of mH � mV . In this exercise we will
derive the energy of the vortex for the remaining case of mH � mV (this case was first considered in [1]).
The energy functional of the vortex is

E[ ~A, φ] =

∫
d2x

[
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, U(φ) = λ
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)2
. (1)

We take the same Ansatz for the fields as before

φ(r) = v η(r) ei θ , Ai(x) = − 1

ne
εij
xj
r2

(1− f(r)) , (2)

where the boundary conditions are

η(0) = 0, η(∞) = 1, f(0) = 1, f(∞) = 0. (3)

1. Show that the energy of the vortex as a function of η and f equals

E[f, η] = 2π

∫
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2. Derive again the equations that η and f need to satisfy in order for the energy functional (4) to be
minimized. The equations are
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3. In order to solve the above equations, we will assume a first order approximation that the electro-
magnetic field of the vortex is confined to its core of radius RV (which we derive later), such that
Ai = 0 at r ≥ RV and η = 0 at r ≤ RV . At the end of the exercise we will improve upon this first
order approximation. Demonstrate that in this approximation, the field f which solves (5) equals

f (0) =


1− r2

R2
V
, r ≤ RV

0, r > RV

(7)
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4. Assuming that the non-linear term in ξ := 1− η can be neglected and also mHRV � 1 (we confirm
this later below), show that the field η which solves (6) equals

η(0) =


0, r ≤ RV

1− K0(mHr)
log(2/(mHRV )) , r & RV

(8)

where the function K0(x) is a modified Bessel function of the second kind that satisfies (refer to [2]) the
differential equation x2∂2xK0(x) + x∂xK0(x)− x2K0(x) = 0 and behaves as1 K0(x) '

x→0
log(2/x)− γ.

5. Substitute the first order solutions (7) and (8) in the energy functional (4) and show, again under the
assumption mHRV � 1, that the energy of the vortex at first approximation equals

E0 = 2π

{
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[
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)]}
. (9)

6. By minimizing the energy with respect to RV , under the assumption that mH � mV , show that the
leading logarithmic approximation is

R2
V '

4

m2
V

log2(mV /mH). (10)

The above behaviour is consistent with our previous assumption that mHRV � 1. Furthermore, the
second term in the energy functional is the main contribution to the energy from the field η. The last
term in E[f, η] is in fact only important for regularizing (cf. [1]) the behaviour of η at r → ∞ and
therefore we were justified in dropping the non-linear term when we derived η(0) above.

7. Show that the energy of the vortex to first order equals

E0 =
2πv2

log(mV /mH)
. (11)

8. Let us now consider small corrections to our first order approximations (7) and (8). By taking into
account the first order (7) for f , together with the limiting behaviour for η at r ' RV as follows from
(8), show that inside the core r ≤ RV the field η behaves as

η ∼ 1

log(2/(mHRV ))

r

RV
(1 +O (r/RV )), r ≤ rV . (12)

9. By using the improved approximation of η as found above, show that inside the core r ≤ RV the field
f equals

f = 1− r2

R2
V

+O
(
r4

R4
V

)
, r ≤ rV . (13)

10. Argue that in the logarithmic approximation, the above corrections to the fields η and f inside the
core r ≤ RV lead to the same energy for the vortex as given in (11).
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1γ is Euler’s constant
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