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Problem 1 - The asymptotic vector potential

In class we have seen that in order for the energy of the Vortex solution to be finite the vector potential
must behave asymptotically as
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(1)

where εij is the Levi-Civita tensor in 2 dimensions, ne is the electric charge of the field φ and n is the
winding number. Prove that (1) is a pure gauge, i.e. that it can be removed by a gauge transformation.

Problem 2 - The equations of motion for the critical vortex

The critical vortex solution is defined by the condition that the masses of the gauge bosons mV and the
Higgs boson mH are equal. In this case the equations of motion for the vortex can be solved and the
energy of the stable configuration can be determined. In the case of a critical vortex this is equivalent to
minimizing the Bogomol’nyi completion formula

T [ ~A, φ] = 2π n v2 +

∫
d2~x

{
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[
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}
. (2)

1. Discuss why, to minimize the energy, we need to impose
B
e + ne e (|φ|2 − v2) = 0

D1φ+ iD2φ = 0 .
(3)

What is the mass of the stable critical vortex configuration?

2. Consider the case n = 1 and put for simplicity mV = mH = 1. Prove that the Ansatz

φ(r) = v η(r) ei θ , Ai(x) = − 1

ne
εij
xj
r2

(1− f(r)) (4)

where η(r) and f(r) are two scalar functions which depend only on the radial coordinate r and θ is
the polar angle, goes through the equations and one gets

− 1
ρ
d f
d ρ + η2 − 1 = 0

ρ d ηdρ − f η = 0 ,

(5)

where we defined the rescaled radial coordinate ρ = ne e v r.

3. What are the boundary conditions for the two fields η(ρ) and f(ρ) as ρ→∞ and ρ→ 0?

4. Use any computer algebra program of your choice (Mathematica, Maple, Matlab,...) in order to solve
numerically the differential equations Eq. (5).

5. What is the asymptotic behaviour of f(ρ) and η(ρ) for ρ→∞?
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1 Problem 3 - The non-critical Vortex

We consider now the general case of a non-critical vortex, i.e. mV 6= mH . In this case the energy cannot
be written as (2), and one must minimize the original form of the Energy

E[ ~A, φ] =

∫
d2x

[
1

4 e2
FijFij + |Diφ|2 + U(φ)

]
, (6)

with
U(φ) = λ

(
|φ|2 − v2

)2
.

1. Using the same Ansatz as for the critical vortex, Eq. (4), and following the same steps you can prove
that the functions f(r) and η(r) satisfy now the equations
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(7)

2. A solution to these equations is not known. We can nevertheless use scaling considerations in order
to estimate the mass of the non-critical vortex. Go back to the Energy functional (6) and, assuming
that mV /mH ≈ 1 (i.e. they are not equal but they are of the same order of magnitude!), perform
the rescaling

φ(~x) = v η(~y ) , Ai(~x) = mV Ci(~y ) with ~y = mV ~x . (8)

Show that under this rescaling the three terms in the energy functional are of the same order for

η ≈ 1 , Ci ≈ 1 , y ≈ 1

and in particular that

1

e2
F 2
ij ≈ |Diφ|2 ≈ λ

(
|φ|2 − v2

)2 ≈ O ((m2
V /e

)2)
. (9)

3. Write down the energy functional in the new variables and argue why its minimum should be attained
for

η ≈ 1 , Ci ≈ 1

such that the characteristic size of the soliton is y ≈ 1.

4. Using these results you can estimate the mass of the soliton from the value of (6) at its minimum.
Show that

Msoliton ≈
m2
V

e2
.
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