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Problem 1 - Fermionic zero-mode in an anti-kink background

During the lecture the quantization of a fermionic field in a kink scalar background field was discussed in
1 + 1−dimensional space-time. The Lagrangian density of the model is

L =
1

2
(∂µφ)

2 −
1

4
g2(φ2 − v2)2 + iψ̄∂̂ψ + λφψ̄ψ. (1)

The scalar field admits a static kink solution φK(x) and if v2 ≫ λ/g, it can be thought of as a time-
independent background when quantizing the fermionic field ψ. Furthermore, it was shown in the lecture
that the equation of motion for the fermion field in the scalar kink background, (i∂̂+λφK(x))ψ = 0, admits

a static zero-mode solution ψ =

(

0
χ0

)

with χ0 ∼ exp(−λ
∫ x

0
φK(x)) −→

|x|→∞
exp(−λv|x|).

1. Recall how charge conjugation and parity transformation act on the fermionic field ψ in 3+1−dimensional
space-time. Generalize this to the case of 1 + 1−dimensional space-time.

2. By explicit calculation, show that the zero-mode solution is invariant under charge conjugation.

3. Show how to explicitly find the zero-mode solution in the anti-kink background by applying the parity
transformation to the zero-mode solution in the kink background.

Problem 2 - Domain wall fermion model

One of the ways to study quantum field theory beyond perturbation theory, is to discretize the space-time;
such an approach is called lattice field theory. We would like to study lattice field theories that are as close
to a continuum limit as possible. One of the important features of realistic field theories is the so-called
chiral symmetry, which is a symmetry of “rotating” left- and right-fermion fields independently from each
other. Chiral symmetry is an important feature of strong and weak interactions. For example, the left-
and right-handed fermions in the Standard Model have different charges w.r.t. electroweak interactions
and this causes parity violating effects. Spontaneous breaking of the chiral symmetry is used to explain a
tiny mass of the pion.

Amusingly, there is a no-go theorem (Nielsen-Nimomiya theorem) that states that a lattice theory for
chiral fermions can not be formulated in a self-consistent way. This was an unfortunate fact for lattice
calculations since it created a serious obstacle in designing theories compatible with the real world. It turns
out that there is a way to get around this theorem - it is known as the domain wall fermion model. This
model produces a chiral fermion in four dimensions from a lattice theory of a massive interacting fermion
in five dimensions. We will work out the basics of this model below.

Consider a theory described by an action in a five-dimensional Minkowski space

S =

∫

d4xdsψ̄(x, s)
[

iΓM∂
M −m(s)

]

ψ(x, s) (2)
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whereM = 0, ..4 is the five-dimensional index, ΓM are the elements of the Clifford algebra in five dimensions,
s is the position label along the fifth dimension and m(s) is the “mass” of the fermion defined as

m(s) =

{

m0, s > 0

−m0, s < 0
(3)

1. Use four-dimensional γ-matrices (which satisfy the four-dimensional Clifford algebra {γµ, γν} =
2gµν1) to construct a representation of the Clifford algebra in five dimensions by choosing appropriate
ΓM ’s.

2. Write down the five-dimensional equation of motion for the field ψ. Solve this equation assuming
that motion along the fifth dimension and in the four-dimensional space factorizes. Choose the four-
dimensional part of the solution by attempting to describe a massless (in the four-dimensional sense)
Dirac particle with momentum p.

3. Show, that by choosing the solution to be the eigenstate of the four-dimensional matrix γ5, you can
find ψ(x, s) which is normalizable in the fifth dimension. This is the fermion localized on the “defect”
in the fifth dimension which looks like a perfect chiral fermion from the point of a four-dimensional
observer.
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