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The idea of QCD sum rules

The basic idea of QCD sum rules is as follows. Consider a correlator of two currents

Tµν(q) = −i

∫

d4xeiqx〈0|TVµ(x)Vν(0)|0〉. (1)

We will assume that the currents are conserved ∂µV
µ(x) = 0. In this situation, we can write

Tµν(q) = Π(q2)(q2gµν − qµqν). (2)

The function Π(q2) satisfies the dispersion relation

Π(q2) =
1

π

∫

ds
ImΠ(s)

s− q2
. (3)

The idea of QCD sum rules is to compute the two sides of the equation in two different ways: once using
the operator product expansion and once using the phenomenological models for the imaginary part of the
correlator. We will discuss some elementary steps that are needed to perform these steps.

One can calculate the imaginary part of the function Π(q2) by inserting the sum over all hadron states in
Eq.(1). If this is done, the result will be proportional to hadronic matrix elements 〈0|Vµ|X〉. The simplest
hadronic states X are single-particle hadronic states that can be produced from a vacuum by a particular
current. By choosing the currents we work with, we can study different hadronic states.

1. Consider the currents V I=1
µ = 1/2(ūγµu− d̄γµd), V

I=0
µ = (ūγµu+ d̄γµd), V

(c)
µ = c̄γµc. Assuming the

isospin symmetry and all other known symmetries of QCD, what are the lighest hadrons that can be
produced by these currents from the vacuum? What are their masses, spins, charges, etc.?

2. The imaginary part of the function ΠV (s) can be related to the cross section for the e+e− annihilation
to hadrons with particular quantum numbers. For this, one needs to connect the electromagnetic
current with the currents discussed above. Show that

ImΠVI=1
(s) =

s

16π2α2
σI=1
e+e−→hadrons. (4)

3. Suppose that σI=1
e+e−→hadrons receives a contribution from a single hadronic state with the mass MV .

Assume that this state has a tiny intrinsic width. Show that

σe+e−→V = (2J + 1)24π2ΓV→e+e−

MV
δ(s−M2

V ), (5)

where ΓV→e+e− is the partial decay width of the resonance V to e+e−.

4. We would like to use this expression to compute the correlator ΠVI=1
(q2), for q2 < 0. To this end,

we can consider contributions of all neutral mesons with the isospin one. What are the masses of the
first three? If we compute their contributions to Eq.(3), how suppressed are the contibutions of the
more massive ones relative to the lightest one?
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5. To enhance the contirbution of a ground state and suppress the contribution of the excited states, we
can use the so-called Borel transform. The Borel transform of a function is defined as

BMf(Q2) = lim
n→∞,Q2

→∞,Q2/n→M2=const

(Q2)n+1

n!

(

−
d

dQ2

)n

f(Q2). (6)

Show that

BM ((s+Q2)−1) = e−s/M2

, BM (Q−2a) = M−2a+2/(a− 1)!, BM (ln(Q2)) = −M2. (7)

6. We will now apply the Borel transform to the computation of ΠI=1(q
2), for q2 = −Q2, Q2 > 0. First,

use the above results to compute the contribution of a resonance of mass M to the Borel transform of
the two-point correlator. Under which circumstances does the Borel transform suppress contributions
of heavier hadrons to the correlator?

7. Second, imagine that Q2 is sufficiently large so that Π(Q2) can be computed using the operator
product expansion for a particular current in QCD

ΠOPE
I=1 (Q2) = a1 ln(Q

2) + a0 + c1
〈0|mq̄q|0〉

Q4
+ c3

〈0|αs/πG
a
µνG

a,µν |0〉

Q4
+ ... (8)

Compute the value of the coefficient a1. The coefficients c1 and c3 can be computed using the operator
product expansion explained in class; they read

c1 = 2, c3 =
1

12
. (9)

Perform the Borel transform of the above expression. What can said about the size of the terms
neglected in Eq.(8) (ellipses)?

8. Equate the Borel transform of ΠOPE
I=1 and Πres

I=1, to obtain the sum rule. Explain how it can be used
to determine the mass and the leptonic width of the lightest vector I = 1 resonance.
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