Supplementary computer-readable expressions to "Three-loop QCD Corrections to $B_{s} \rightarrow \mu^{+} \mu^{-"}$

Thomas Hermann, Mikołaj Misiak and Matthias Steinhauser

October 2013

The file cA_NNLO.m contains computer-readable results for the Standard Model (SM) contributions to the Wilson coefficients C_{A} that have been calculated in Ref. [1].

The notation used in the file cA_NNLO.m is described in the table below, where we use

$$
\begin{gather*}
C_{A}=C_{A}^{(0)}+\frac{\alpha_{s}}{4 \pi} C_{A}^{(1)}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} C_{A}^{(2)}+\ldots, \tag{1}\\
C_{A}^{(n)}=C_{A}^{W,(n)}+C_{A}^{Z,(n)}, \tag{2}
\end{gather*}
$$

together with the variables

$$
\begin{equation*}
x=\frac{m_{t}^{2}\left(\mu_{0}\right)}{M_{W}^{2}}, \quad \quad w=1-\frac{1}{x}, \quad y=\frac{1}{\sqrt{x}} . \tag{3}
\end{equation*}
$$

The symbol xTri labels the fermion triangle contributions to the Z-boson penguin contribution. MATADMasterIntegralRule contains MATHEMATICA replacement rules. It has to be applied before evaluating the expressions numerically.

The file intermediate_results.m contains results for coefficient functions and renormalization constants which are needed for the matching procedure. In particular, we provide for the one- and two-loop Wilson coefficients $C_{A}^{W,(n)}, C_{A}^{Z,(n)}$ and $C_{A}^{E,(n)}$ results including contributions up to order ϵ^{2} and ϵ, respectively. In intermediate_results.m the following variables are defined:
dZmt1, dZmt2, dZgSM1, dZEN1, dZEN2, deltaZpsi, Zsb0c, Zsb0t, Zsb1c, Zsb1t, Zsb2cy, Zsb2cw, Zsb2ty, Zsb2tw, Ktildet, Ktildec, KtildeTrit, KtildeTric, cAbareWt0, cAbareWc0, cAbareEt0, cAbareEc0, cAbareZt0, cAbareZc0, cAbareWt1, cAbareWc1, cAbareEt1, cAbareEc1, cAbareZt1, cAbareZc1, cAbareWt2y, cAbareWt2w, cAbareWc2y, cAbareWc2w, cAbareZc2y, cAbareZc2w, cAbareZcTriy, cAbareZcTriw, cAbareZt2y, cAbareZt2w, cAbareZtTriy, cAbareZtTriw, cAZt0with0ep2, cAWt0with0ep2, cAWc0withOep2, cAZt1withOep, cAWt1withOep, cAWc1withOep, cAEtOwithOep2, cAEcOwithOep2, cAEt1with0ep, cAEc1with0ep,
The notation is in analogy to the expressions in Tab. 1 and should be self-explanatory.

cA_NNLO.m	quantity	equation in Ref. [1]
cAWt0	$C_{A}^{W, t,(0)}$	Eq. (24)
cAWc0	$C_{A}^{W, c,(0)}$	Eq. (24)
cAWt1	$C_{A}^{W, t,(1)}$	Eq. (24)
cAWc1	$C_{A}^{W, c,(1)}$	Eq. (24)
cAWt2log	$C_{A}^{W, t,(2)}\left(\mu_{0}\right)-C_{A}^{W, t,(2)}\left(\mu_{0}=m_{t}\right)$	Eq. (25)
cAWc2log	$C_{A}^{W, c,(2)}\left(\mu_{0}\right)-C_{A}^{W, c,(2)}\left(\mu_{0}=M_{W}\right)$	Eq. (25)
cAWc2y	$C_{A}^{W, c,(2)}\left(\mu_{0}=M_{W}\right)$	Eq. (26)
cAWc2w	$C_{A}^{W, c,(2)}\left(\mu_{0}=M_{W}\right)$	Eq. (27)
cAWt2y	$C_{A}^{W, t,(2)}\left(\mu_{0}=m_{t}\right)$	Eq. (28)
cAWt2w	$C_{A}^{W,,,(2)}\left(\mu_{0}=m_{t}\right)$	Eq. (29)
cAZt0	$C_{A}^{Z, t,(0)}$	Eq. (41)
cAZt1	$C_{A}^{Z, t,(1)}$	Eq. (41)
cAZt2log	$C_{A}^{Z, t,(2)}\left(\mu_{0}\right)-C_{A}^{Z, t,(2)}\left(\mu_{0}=m_{t}\right)$	Eq. (42)
cAZ2y	$C_{A}^{Z, t,(2)}\left(\mu_{0}=m_{t}\right)+\mathrm{xTri}\left(C_{A}^{Z, t, \text { tria. }}-C_{A}^{Z, c, \text {,tria. }}\right)$	Eqs. (43) and (44)
cAZ2w	$C_{A}^{Z, t,(2)}\left(\mu_{0}=m_{t}\right)+\mathrm{xTri}\left(C_{A}^{Z, t, \text { tria. }}-C_{A}^{Z, c, \text {,tria. }}\right)$	Eqs. (43) and (44)

Table 1: One-, two- and three-loop contributions to the Wilson coefficients $C_{A}^{W,(n)}$ and $C_{A}^{Z,(n)}$ as contained in the file cA NNLO. m. In case the variable name ends with " y " (" v ") the corresponding result is expressed in terms of $y(w)$ and is valid for $m_{t} \gg M_{W}\left(m_{t} \approx M_{W}\right)$. The ending "log" reminds that only the exact dependence on $\log \mu^{2}$ is contained in the corresponding expression.

References

[1] T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD Corrections to $B_{s} \rightarrow$ $\mu^{+} \mu^{-}$, arXiv:1311.1347v1, SFB/CPP-13-83, TTP13-034.

